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1.1 The Fréchet distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Background and related work . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contribution of this thesis . . . . . . . . . . . . . . . . . . . . . . . . 5
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Abstract

Polygonal curves play an important role in many applied areas, such as 3D mod-

eling in computer graphics, map matching in GIS, and protein backbone structural

alignment and comparison in computational biology. Measuring the similarity of two

curves in such applications is a challenging task, and various similarity measures have

been suggested and investigated. The Fréchet distance is a useful and well-studied

similarity measure that has been applied in many fields of research and applications.

The Fréchet distance is often described by an analogy of a man and a dog

connected by a leash, each walking along a curve from its starting point to its end

point. Both the man and the dog can control their speed but they are not allowed

to backtrack. The Fréchet distance between the two curves is the minimum length

of a leash that is sufficient for traversing both curves in this manner.

This research focuses on the discrete Fréchet distance, where, instead of continuous

curves, we are given finite sequences of points, obtained, e.g., by sampling the

continuous curves, or corresponding to the vertices of polygonal chains. Now, the

man and the dog only hop monotonically along the sequences of points. The discrete

Fréchet distance is considered a good approximation of the continuous distance, and

is easier to compute. Much research has been done on the Fréchet distance, the

majority of which considers only the continuous version. However, in some situations,

the discrete Fréchet distance is more appropriate. For example, in the context of

computational biology where each vertex of the chain represents an alpha-carbon

atom, using the continuous Fréchet distance will result in mapping of arbitrary points,

which is biologically meaningless.

This thesis contains two main parts, where in each part we study several problems

with a common basic motivation.

In the first part we consider some real-world situations, in which the discrete

Fréchet distance might not give a meaningful estimation of the resemblance between

two curves. For example, when the input curves contain noise, or when they are

not aligned with each other, the Fréchet distance may be much larger than the

“true” value. Thus, in this part, we study other variants of Fréchet distance that are

more meaningful in these situations, specifically, the discrete Fréchet distance with

shortcuts, and the discrete Fréchet distance under translation. We also introduce

a new variant of the Fréchet distance, which we call the discrete Fréchet gap. We

believe that in some situations this new measure (and its variants) better reflects

our intuitive notion of similarity.

In the second part, we deal with problems that arise from the constantly growing

vii



amounts of data, specifically trajectory data. When the input curves or chains are

large, or when our data set contains a huge amount of trajectories, running time

becomes a critical issue, and tools that enable fast calculations on the data are

needed. First, we consider the nearest neighbor problem and the clustering problem

for curves. These are two fundamental problems, where the input contains a large

set of polygonal curves that need to be preprocessed or compressed in some way,

such that certain information can be calculated efficiently. Then, we consider the

simplification problem and the chain pair simplification problem. In these problems

we are given only one or two input curves, but the number of points defining them is

large. Thus, before we can perform calculations on them or visualize them, we must

simplify them, without losing important features.
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Chapter 1

Introduction

Polygonal curves play an important role in many applied areas, such as 3D modeling in

computer graphics, map matching in GIS, and protein backbone structural alignment

and comparison in computational biology. In such applications, the objects of

interest are often modeled by their shape, and thus, an important step of the

recognition process is to look for known shapes in an image. In many applications,

two-dimensional shapes are given by the planar curves forming their boundaries.

Consequently, a natural problem in shape comparison and recognition is to measure

to what extent two given curves resemble each other. Naturally, the first question to

be answered is what distance measure between curves should be used to reflect the

intuitive notion of resemblance.

1.1 The Fréchet distance

Many methods are used to compare curves in these applications, and one of the most

prevalent is the Fréchet distance [Fré06]. Other measures, such as the Hausdorff

distance and RMSD (Root Mean Square Deviation) only take into account the

sets of points on both curves but not the order in which they appear along the curves.

For example, given two polygonal curves A : [0,m]→ Rd and B : [0, n]→ Rd, the

Hausdorff distance between them is defined as follows:

dH(A,B) = max
{

max
x∈[0,m]

{ min
y∈[0,n]

d(A(x), B(y))}, max
y∈[0,n]

{ min
x∈[0,m]

d(A(x), B(y))}
}
.

We use d(a, b) to denote the Euclidean distance between two points a and b, but,

depending on the application, other distance measures may be used. A polygonal

curve A : [0,m]→ Rd consists of m line segments aiai+1 for each i ∈ {0, 1, . . . ,m−1},
where ai = A(i).

In Figure 1.1 we give an example of a pair of non-similar polygonal curves (in

the Fréchet sense) such that the Hausdorff distance between them is small.

In order to overcome this discrepancy, one can use the Fréchet distance, which

1



2 Introduction

Figure 1.1: A pair of curves that are similar under the Hausdorff distance, since the order along

the curves is not taken into account. The curves are not similar under the Fréchet distance.

was first defined by Maurice Fréchet (1878-1973). The Fréchet distance is generally

described as follows: Consider a person and a dog connected by a leash, each walking

along a curve from its starting point to its end point. Both can control their speed

but they are not allowed to backtrack. The Fréchet distance between the two curves

A and B, denoted by dF (A,B), is the minimum length of a leash that is sufficient

for traversing both curves in this manner.

More formally, the Fréchet distance is usually defined as:

dF (A,B) = min
α:[0,1]→[0,m]
β:[0,1]→[0,n]

max
t∈[0,1]

{
d
(
A(α(t)), B(β(t))

)}
,

where α and β range over all continuous non-decreasing functions with α(0) = 0,

α(1) = m, β(0) = 0, β(1) = n.

The discrete Fréchet distance (DFD for short) is a simpler variant that arises

when one replaces each of the input curves by a sequence of sample points. When the

sample is sufficiently dense, the resulting discrete distance is a good approximation of

the actual continuous distance. We can view these sequences of points as polygonal

curves or chains.

Intuitively, the discrete Fréchet distance replaces the curves by two sequences of

points A = (a1, ..., am) and B = (b1, ..., bn), and replaces the person and the dog by

two frogs, the A-frog and the B-frog, initially placed at a1 and b1, respectively. At

each move, the A-frog or the B-frog (or both) jumps from its current point to the

next one. The frogs are not allowed to backtrack. We are interested in the minimum

length of a leash that connects the frogs and allows the A-frog and the B-frog to

get to am and bn, respectively. More formally, for a given length δ of the leash, a

jump is allowed only if the distances between the two frogs before and after the

jump are both at most δ; the discrete Fréchet distance between A and B, denoted

by ddF (A,B), is then the smallest δ > 0 for which there exists a sequence of jumps

that brings the frogs to am and bn, respectively.
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There are several equivalent ways to formally define the discrete Fréchet distance.

In each of the following chapters, we prefer a different definition, i.e., the one that is

most convenient for our purposes.

Eiter and Mannila [EM94] showed that the discrete and continuous versions of

the Fréchet distance relate to each other as follows:

dF (A,B) ≤ ddF (A,B) ≤ dF (A,B) + max{D(A), D(B)},

where D(A) is the length of the longest edge in A.

The Fréchet distance and the discrete Fréchet distance are used as similarity

measures between curves and sampled curves, respectively, in many applications.

Among these are speech recognition [KHM+98], signature verification [MP99], match-

ing of time series in databases [KKS05], map-matching of vehicle tracking data

[BPSW05, CDG+11, WSP06], and analysis of moving objects [BBG08, BBG+11].

While one can claim that the discrete Fréchet distance is only a good approximation

of the continuous one, the use of discrete Fréchet distance, in many situations, makes

more sense. For example, in computational biology, the discrete Fréchet distance

was applied to protein backbone alignment [JXZ08]. In this application, each vertex

represents an alpha-carbon atom. Applying the continuous Fréchet distance will

cause mapping of arbitrary points, which is meaningless biologically.

1.2 Background and related work

The Fréchet distance and its variants have been studied extensively in the past

two decades. For two polygonal curves, each of length n, Alt and Godau [AG95]

showed that the Fréchet distance between them can be computed, using dynamic

programming, in O(n2 log n) time. Eiter and Mannila [EM94] showed that the

discrete Fréchet distance can be computed, also using dynamic programming, in

O(n2) time.

It has been an open problem to compute (exactly) the continuous or discrete

Fréchet distance in subquadratic time. A lower bound of Ω(n log n) was given

for the problem of deciding whether the Fréchet distance between two curves is

smaller than or equal to a given value (for both the continuous and discrete variants)

[BBK+07]. Alt [Alt09] has conjectured that the decision problem of the (continuous)

Fréchet distance problem is 3SUM-hard [GO95]. Buchin et al. [BBMM14] improved

the bound of Alt and Godau by showing how to compute the Fréchet distance in

O(n2(log n)1/2(log log n)3/2) time on a pointer machine, and in O(n2(log log n)2) time

on a word RAM. Agarwal et al. [AAKS14] showed how to compute the discrete

Fréchet distance in O

(
n2 log log n

log n

)
time. Bringmann [Bri14], and later Bringmann

and Mulzer [BM16], presented a conditional lower bound implying that strongly
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subquadratic algorithms for the (discrete and continuous) Fréchet distance are

unlikely to exist, even in the one-dimensional case and even if the solution may be

approximated up to a factor of 1.399. Moreover, they present a linear-time greedy

algorithm with approximation factor of 2O(n), and an α-approximation algorithm that

runs in timeO(n log n+n2/α), for any α ∈ [1, n]. Recently, Chan and Rahmati [CR18]

improved this result by presenting an α-approximation algorithm for any α ∈
[1,
√
n/ log n] that runs in O(n log n+ n2/α2) time.

Given the apparent difficulty of achieving an efficient constant factor approxi-

mation algorithm for the Fréchet distance between two arbitrary polygonal curves,

a natural direction is to develop algorithms for realistic scenes. Several restricted

families of curves were considered in the literature in the context of Fréchet distance.

Usually, these are curves that behave “nicely” and are assumed to be the input in

practice. Alt et al. [AKW03] showed that for closed convex curves, the Fréchet

distance equals the Hausdorff distance and hence the O(n log n) algorithm for the

Hausdorff distance applies. They also showed that for k-bounded curves the Fréchet

distance is at most (1 + k) times the Hausdorff distance, which implies an O(n log n)

time (k + 1)-approximation algorithm for the Fréchet distance. A planar curve P is

called k-bounded for some real parameter k ≥ 1, if for any two points x and y on P ,

the portion of P between x, y is contained in the union of the disks D(x, k
2
d(x, y))

and D(y, k
2
d(x, y)), where D(p, r) is the disk with center at p and radius r. Aronov et

al. [AHK+06] have given a (1 + ε)-approximation algorithm for the discrete Fréchet

distance between two backbone curves that runs in near linear time. Backbone curves

are required to have edges with length in some fixed constant range, and a constant

lower bound on the minimal distance between any pair of non-consecutive vertices;

they model, e.g., the backbone chains of proteins. Driemel et al. [DHW12] studied

the Fréchet distance of another family of curves, called c-packed curves. A curve

P is c-packed if the total length of P inside any circle is bounded by c times the

radius of the circle. Given two c-packed curves P and Q with total complexity n,

a (1 + ε)-approximation of the Fréchet distance between them can be computed in

O(cn/ε+ cn log n) time.

In the standard Fréchet metric we consider polygonal curves. Rote [Rot07]

considered the Fréchet distance between two curves which consists of a sequence

of smooth curved pieces that are sufficiently well behaved, such as circular arcs or

parabolic arcs. He showed that the Fréchet distance between two such curves can be

computed in O(n2 log n) time (n is the total size of the curves). The decision version

of the problem can be solved in O(n2) time, which is the best known running time

for polygonal curves.

Many variants of the Fréchet distance have been studied in the literature. For

example, the weak Fréchet distance, where the dog and its owner are allowed

to backtrack. The weak Fréchet distance can be computed in O(mn log(mn)) time
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[AG95]. Another well-known variant is the Fréchet distance with shortcuts,

where the dog and its owner are allowed to skip parts of their respective polygonal

curves. This variant is also used to reduce the impact of outliers, and it will be

discussed in more detail in Chapter 2. Other examples are the Fréchet distance

with speed limits [MSSZ11], where the speed of traversal along each segment of

the curves is restricted to some specified range, and the locally correct Fréchet

matchings [BBMS19] which aims at restricting the set of Fréchet matchings to

“natural” matchings.

Another distance measure that is closely related to DFD is Dynamic Time

Warping (DTW), which is defined between sequences of points rather than curves,

and mainly used for analyzing time series. Here, instead of taking the smallest

maximum distance between the frogs, we take the smallest sum of distances. Efrat

et al. [EFV07] adapted the idea of DTW measure to compute an integral or summed

version of the continuous Fréchet distance, and the average Fréchet distance was

suggested in [BPSW05].

The Fréchet distance was also considered in different settings, for example, the

geodesic Fréchet distance [IW08], where the curves reside in a space with obstacles,

and the distance between two points is the length of the shortest obstacle-avoiding

path between them. In the homotopic Fréchet distance [CdVE+10], the leash cannot

switch discontinuously from one position to another and cannot jump over obstacles.

Ahn et al. [AKS+12] considered a setting where the points of the polygonal curves

are imprecise, i.e., each point could lie anywhere within a given region.

1.3 Contribution of this thesis

As demonstrated above, there is a growing body of research that is related to the

Fréchet distance and its variants. In our research we focused on several problems that

arise from real-world applications for curves, and which carry significant importance

in facing the needs of the modern world. This thesis has two parts, each dealing

with several different problems that share a similar basic motivation.

Part I: In a Search for a Meaningful Distance Measure

Part I aims to address the fact that the Fréchet and discrete Fréchet distances are

not perfect measures, and in some real-world situations may not give a meaningful

estimation of the extent to which two given curves resemble each other. For example,

when the input curves contain noise, or when they are not aligned with respect to

each other, the Fréchet distance may be much larger than the “true” value. Thus,

in this part, we consider several other variants of Fréchet distance which are more

suitable and meaningful in some situations.
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1.3.1 The discrete Fréchet distance with shortcuts

In many of the application domains using the Fréchet distance, the curves or the

sampled sequences of points are generated by physical sensors, such as GPS devices.

These sensors may generate inaccurate measurements, which we refer to as outliers.

Since the Fréchet distance is a bottleneck (min-max) measure, it is very sensitive to

outliers, which may cause the Fréchet distance to be much larger than the distance

without the outliers.

Several variants of the Fréchet distance better suited for handling outliers were

suggested and studied in the literature, among them is the (continuous) Fréchet

distance with shortcuts, where the dog is allowed to skip parts of its polygonal

curve. In the continuous version, each skipped subcurve is replaced by a shortcut,

i.e. a straight segment that connects its start and end points. The Fréchet distance

with shortcuts is the Fréchet distance between the new curve with shortcuts and

the other curve. This variant was introduced by Driemel and Har-Peled [DH13],

who gave near-linear time approximation algorithm for the problem where shortcuts

are allowed only between vertices of the curve, and the given polygonal curves are

c-packed1. Buchin et al. [BDS14] considered a more general version of the Fréchet

distance with shortcuts, where shortcuts are allowed between any pair of points of the

noisy curve. They showed that this problem is NP-Hard, and gave a 3-approximation

algorithm for the decision version of this problem that runs in O(n3 log n) time.

In Chapter 2 we define and study several variants of the discrete Fréchet distance

with shortcuts, where one of the frogs (or both frogs in another variant) may take

shortcuts, i.e., skip points of the noise-containing sequence, which can be considered

as outliers. When shortcuts are allowed only in one noise-containing curve, we

give a randomized algorithm that runs in O((m + n)6/5+ε) expected time, for any

ε > 0. When shortcuts are allowed in both curves, we give an O((m2/3n2/3 +

m + n) log3(m + n))-time deterministic algorithm. We also consider the semi-

continuous Fréchet distance with one-sided shortcuts, where we have a sequence of

m points and a polygonal curve of n edges, and shortcuts are allowed only in the

sequence. We show that this problem can be solved in randomized expected time

O((m+ n)2/3m2/3n1/3 log(m+ n)).

In contrast to the results regarding the continuous version, our results are some-

what surprising, as they demonstrate that both variants of the discrete Fréchet

distance with shortcuts are easier to compute (exactly, with no restriction on the

input) than all previously studied variants of the Fréchet distance.

This is a joint work with Rinat Ben Avraham, Haim Kaplan and Micha Sharir,

that appeared in the International Symposium on Computational Geometry, 2014

(see [AFK+14]). A full version of the paper appeared in ACM Transactions on

Algorithms (see [AFK+15]). In Chapter 2, we only describe the parts in which I was

1A curve P is c-packed if the total length of P inside any ball of radius r is at most cr.
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involved and to which I have contributed.

1.3.2 The discrete Fréchet distance under translation

Another fundamental problem in many applications of the Fréchet distance, is that

the input curves are not necessarily aligned, and one of them must undergo some

transformation in order for the distance computation to be meaningful. Thus, an

important variant of DFD is the discrete Fréchet distance under translation.

Ben Avraham et al. [AKS15] presented an O(m3n2(1+log(n/m)) log(m+n))-time

algorithm for DFD between two sequences of points of sizes m and n in the plane

under translation. Assumingm ≤ n, their idea is to construct an arrangement of disks

of size O(n2m2) and traverse its cells while updating reachability in a directed grid

graph of size O(nm), in O(m(1+ log(n/m)) time per update. Recently, Bringman et

al. [BKN19] managed to improve the update time to Õ(n2/3), and thus improved the

running time to Õ(n4.66...). Moreover, they provide evidence that constructing the

arrangement of size O(n2m2) is unavoidable by proving a conditional lower bound of

n4−o(1) on the running time of DFD under translation.

In Chapter 3 we consider two variants of DFD, both under translation. For DFD

with shortcuts in the plane, we present an O(m2n2 log2(m + n))-time algorithm,

by presenting a dynamic data structure for reachability queries in the underlying

directed graph. This algorithms can be generalized to any constant dimension d ≥ 1.

Notice that the running time of our algorithm for the shortcuts version is very close

to the lower bound of the original version. For points in 1D, we show how to avoid

the use of parametric search and remove a logarithmic factor from the running time

of (the 1D versions of) these algorithms and of an algorithm for the weak discrete

Fréchet distance; the resulting running times are thus O(m2n(1 + log(n/m))), for

the discrete Fréchet distance, O(mn log(m + n)), for the shortcuts variant, and

O(mn log(m+ n)(log log(m+ n))3) for the weak variant.

Our 1D algorithms follow a general scheme introduced by Martello et al. [MPTDW84]

for the Balanced Optimization Problem (BOP), which is especially useful when an

efficient dynamic version of the feasibility decider is available. We present an alter-

native scheme for BOP, whose advantage is that it yields efficient algorithms quite

easily, without having to devise a specially tailored dynamic version of the feasibility

decider. We demonstrate our scheme on the most uniform path problem (significantly

improving the known bound), and observe that the weak discrete Fréchet distance

under translation in 1D is a special case of it.

This work appeared in the Scandinavian Symposium and Workshops on Algorithm

Theory, 2018 (see [FK18]).
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1.3.3 The discrete Fréchet gap

In Chapter 4 we introduce the (discrete) Fréchet gap and its variants as an alternative

measure of similarity between polygonal curves of size n. Referring to the frogs

analogy, the discrete Fréchet gap is the minimum difference between the longest and

shortest positions of the leash needed for the frogs to traverse their point sequences.

For handling outliers, we suggest the one-sided discrete Fréchet gap with shortcuts

variant, where the frog can skip points of its chain. We believe that in some situations

this new measure (and its variants) better reflects our intuitive notion of similarity,

since the familiar (discrete) Fréchet distance (and its variants) is indifferent to

(matched) pairs of points that are relatively close to each other.

We show an interesting connection between the discrete Fréchet gap and DFD

under translation, studied in Chapter 3. More precisely, the shortcuts and the

weak versions of DFD, both in 1D under translation, are in some sense analogous

to their respective gap variants (in d dimensions and no translation): we can use

(almost) similar algorithms to compute them. Notice that the number of potential

values for the discrete Fréchet gap is O(n4), while it is only O(n2) for the discrete

Fréchet distance. Yet our algorithms for the gap variants are much faster, and run

in O(m2n(1 + log(n/m))) for the discrete Fréchet gap, O(mn log(m + n)), for the

shortcuts variant, and O(mn log(m+ n)(log log(m+ n))3) for the weak variant.

This work (partially) appears in a manuscript published on ArXiv (see [FK15]),

and in the Scandinavian Symposium and Workshops on Algorithm Theory, 2018

(see [FK18]).

Part II: Dealing with Big (Trajectory) Data

Part II deals with problems that arise from the constantly growing amounts of data,

specifically trajectory data. When the input curves or chains are large, or when our

data set contains a huge amount of trajectories, running time becomes a critical

issue, and we have to develop tools that allow fast calculations on the data. In

this part we consider several different problems that are motivated by the need to

handle big data. In Chapters 5 and 6, we consider two fundamental problems where

the input contains a large set of polygonal curves that need to be preprocessed or

compressed in some way such that certain information can be calculated efficiently.

In Chapters 7 and 8, we consider problems where there are only one or two input

curves, but the number of points defining them is large. In these cases running time

becomes critical, and visualizing or applying calculations on just one curve without

losing valuable properties is a more difficult task.
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1.3.4 Nearest neighbor search and clustering for curves

Nearest neighbor search is a fundamental problem in computer science, and significant

progress on this problem has been in the past couple of decades. This important task

also arises in applications where the recorded instances are trajectories or polygonal

curves, however, most research has focused on sets of points. In the nearest neighbor

problem for curves, the goal is to construct a compact data structure over a set C of

n input curves, each of length at most m, such that given a query curve Q of length

m, one can efficiently find the curve from C closest to Q.

Dreimel and Silvestri [DS17] show that unless the orthogonal vectors hypothesis

fails, there exists no data structure for nearest neighbor under the (discrete or

continuous) Fréchet distance that can be built in O(n2−εpoly(m)) time and has query

time in O(n1−εpoly(m)), for any ε > 0. Thus, we look for more relaxed variants of

the problem that can be solved efficiently. Our first direction is to investigate the

approximate nearest neighbor problem under the discrete Fréchet distance (and also

other closely related measures). Several methods were used in previous research of the

problem, each leading to not very satisfactory results [Ind02, DS17, EP18]. The most

recent result was presented by Emiris and Psarros [EP18], providing approximation

factor of (1 + ε), with space complexity in Õ(n) · (2 + d
logm

)O(m1/ε·d log(1/ε)) and query

time in O(d · 22m log n) (for curves in d dimensions). In Chapter 5, we present an

algorithm based on a discretization of the space, which is simple and deterministic.

Yet, somewhat surprisingly, our algorithm is more efficient than all previous results:

we still give an approximation factor of (1+ε), but with space complexity in n·O(1
ε
)md

and query time in O(md log(mnd
ε
)).

However, its was shown in [IM04, DKS16] that unless the strong exponential time

hypothesis fails, nearest neighbor problem under DFD is hard to approximate within

a factor of c < 3, with a data structure requiring O(n2−ε polylogm) preprocessing

and O(n1−ε polylogm) query time for ε > 0. Our approximation data structure

uses space and query time exponential in m, which makes it impractical for large

curves. Therefore, in our second direction (presented in Chapter 6), we identify two

important cases for which it is possible to obtain practical bounds for the nearest

neighbor problem, even when m and n are large. In these cases, either Q is a line

segment or C consists of line segments, and the bounds on the size of the data

structure and query time are nearly linear in the size of the input and query curve,

respectively. The returned answer is either exact under L∞, or approximated to

within a factor of 1+ ε under L2. We also consider the variants in which the location

of the input curves is only fixed up to translation, and obtain similar bounds, under

L∞.

Clustering is another fundamental problem in data analysis that aims to partition

an input collection of curves C into clusters where the curves within each cluster

are similar in some sense. In the center problem, the goal is to find a curve Q, such
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that the maximum distance between Q and the curves in C is minimized. Driemel

et al. [DKS16] introduced the (k, ℓ)-Center problem, where the k desired center

curves are limited to at most ℓ vertices each. In the case of the (k, ℓ)-Center

problem under the discrete Fréchet distance, Driemel et al. showed that the problem

is NP-hard to approximate within a factor of 2− ε when k is part of the input, even

if ℓ = 2 and d = 1. Furthermore, the problem is NP-hard to approximate within a

factor 2− ε when ℓ is part of the input, even if k = 2 and d = 1, and when d = 2 the

inapproximability bound is 3 sinπ/3 ≈ 2.598 [BDG+19]. Again, the above results

imply that algorithms for the (k, ℓ)-Center problem that achieve efficient running

times are not realistic. Thus, in Chapter 6 we focus on a specific important settings,

where the center is a line segment, i.e., we seek the line segment that represents the

given set as well as possible. We present near-linear time exact algorithms under L∞,

even when the location of the input curves is only fixed up to translation. Under L2,

we present a roughly O(n2m3)-time exact algorithm.

The results presented in Chapter 5 were obtained in a joint work with Arnold

Filtser, and appeared in ArXiv, 2019 (see [FFK19]). The results presented in

Chapter 5 are a joint work with Boris Aronov, Michael Horton, and Khadijeh

Sheikhan.

1.3.5 Simplifying chains under the discrete Fréchet distance

Many real-world applications have to deal with very large chains, which makes the

processing time a critical issue. A natural approach is to process another simpler

chain, that is a good approximation of the original one. For instance, many GPS

applications use trajectories that are represented by sequences of densely sampled

points, which we want to simplify in order to perform efficient calculations.

In Chapter 7, we discuss the simplification problem. Here, given some chain A

of length n, the goal is to find a smaller chain A′ which is as similar as possible

to the original chain A. First we present an O(n2 log n)-time algorithm for the, so

called, Min-δ Fitting with k-Chain Simplification problem, presented in [BJW+08],

improving their O(n3) time algorithm. Then we show how to adapt the techniques of

[DH13] to achieve an approximate simplification under the discrete Fréchet distance.

Following [DH13], we present a collection of data structures for discrete Fréchet

distance queries, and then show how to use it to preprocess a chain in near-linear

time and space, such that given a number k, one can compute a simplification in

O(k) time which has K = 2k − 1 vertices (of the original chain) and is optimal up

to a constant factor with respect to the discrete Fréchet distance, compared to any

chain of k arbitrary vertices.

This work appeared in Information Processing Letters, 2018 (see [Fil18]).

When polygonal chains are large, it is difficult to efficiently compute and vi-

sualize the structural resemblance between them. Simplifying two aligned chains
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independently does not necessarily preserve the resemblance between the chains. This

problem in the context of protein backbone comparison has led Bereg et al. [BJW+08]

to pose the Chain Pair Simplification problem (CPS). In this problem, the goal is to

simplify both chains simultaneously, so that the discrete Fréchet distance between

the resulting simplifications is bounded. More precisely, given two chains A and B,

one needs to find two simplifications A′,B′ with vertices from A,B, respectively, such

that the discrete Fréchet distance between A,A′, B,B′, and A′, B′ is small.

When the chains are simplified using the Hausdorff distance instead of DFD, the

problem becomes NP-complete. However, the complexity of the version that uses

DFD has been open since 2008. In Chapter 8 we introduce the weighted chain pair

simplification problem and prove that the weighted version using DFD is weakly NP-

complete. Then, we resolve the question concerning the complexity of CPS under the

discrete Fréchet distance by proving that it is polynomially solvable, contrary to what

was believed. Moreover, we devise a sophisticated O(m2n2min{m,n})-time dynamic

programming algorithm for the minimization version of the problem. Besides being

interesting from a theoretical point of view, only after developing (and implementing)

this algorithm, were we able to apply the minimization problem to datasets from the

Protein Data Bank (PDB). In addition, we study several less rigid variants of the

problem.

Next, we consider for the first time the problem where the vertices of the sim-

plifications A′, B′ may be arbitrary points, i.e., they are not necessarily from A,B,

respectively. Since this problem is more general, we call it General CPS, or GCPS

for short. Our main contribution, is a (relatively) efficient polynomial-time algorithm

for GCPS, and a more efficient 2-approximation algorithm for the problem. We also

investigated GCPS under the Hausdorff distance, showing that it is NP-complete

and presented an approximation algorithm for the problem.

These results led to two papers: the first is a joint work with Chenglin Fan,

Tim Wylie and Binhai Zhu, which appeared in the International Symposium on

Algorithms and Data Structures, 2015 (see [FFK+15]), and the second is a joint work

with Chenglin Fan and Binhai Zhu, which appeared in the International Symposium

on Mathematical Foundations of Computer Science, 2016 (see [FFKZ16]).
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Chapter 2

The Discrete Fréchet Distance with

Shortcuts

2.1 Introduction

In many of the application domains using the Fréchet distance, the curves or the

sampled sequences of points are generated by physical sensors, such as GPS. These

sensors may generate inaccurate measurements, which we refer to as outliers. The

Fréchet distance and the discrete Fréchet distance are bottleneck (min-max) measures,

and are therefore sensitive to outliers, and may fail to capture the similarity between

the curves when there are outliers, because the large distance from an outlier to the

other curve might determine the Fréchet distance, making it much larger than the

distance without the outliers.

In order to handle outliers, Driemel and Har-Peled [DH13] introduced the (contin-

uous) Fréchet distance with shortcuts. They considered piecewise linear curves and

allowed (only) the dog to take shortcuts by walking from a vertex v to any succeeding

vertex w along the straight segment connecting v and w. This “one-sided” variant

allows one to “ignore” subcurves of one (noisy) curve that substantially deviate from

the other (more reliable) curve. Driemel and Har-Peled gave efficient approximation

algorithms for the Fréchet distance in such scenarios; these are reviewed in more

detail later on.

Driven by the same motivation of reducing sensitivity to outliers, we define two

variants of the discrete Fréchet distance with shortcuts. In the one-sided variant, we

allow the A-frog to jump to any point that comes later in its sequence, rather than

just to the next point. The B frog has to visit all the B points in order, as in the

standard discrete Fréchet distance problem. However, we add the restriction that

only a single frog is allowed to jump in each move (see below for more details). As in

the standard discrete Fréchet distance, for a leash of length δ such a jump is allowed

only if the distances between the two frogs before and after the jump are both at

most δ. The one-sided discrete Fréchet distance with shortcuts, denoted as

15
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d−dF (A,B), is the smallest δ > 0 for which there exists such a sequence of jumps that

brings the frogs to am and bn, respectively.

We also define the two-sided discrete Fréchet distance with shortcuts,

denoted as d+dF (A,B), to be the smallest δ > 0 for which there exists a sequence of

jumps, where both frogs are allowed to skip points as long as the distances between

the two frogs before and after the jump are both at most δ. Here too, we allow only

one of the frogs to jump at each move.

In the (standard) discrete Fréchet distance, the frogs can make simultaneous

jumps, each to its next point. Here though simultaneous jumps make the problem

degenerate as it is possible for the frogs to jump from a1 and b1 straight to am and

bn (in the two-sided scenario). The one-sided version can easily be extended to the

case where simultaneous jumps are allowed, but, to keep the description simple, we

describe here only the case where such simultaneous jumps are not allowed.

Our results. In a joint work with Rinat Ben Avraham, Haim Kaplan and Micha

Sharir (See [AFK+14]), we give efficient algorithms for computing the discrete Fréchet

distance with one-sided and two-sided shortcuts. The structure of the one-sided

problem allows us to decide whether the distance is no larger than a given δ, in

O(n + m) time, and the challenge is to search for the optimum, using this fast

decision procedure, with a small overhead. The naive approach would be to use the

O((m2/3n2/3+m+n) log(m+n))-time distance selection procedure of [KS97], which

would make the running time Ω((m2/3n2/3 +m+ n) log(m+ n)), much higher than

the linear cost of the decision procedure.

To tighten this gap, we develop an algorithm that, given an interval (α, β] and a

parameter L, decides, with high probability and in O((m+n)4/3+ε/L1/3+m+n) time,

whether the number of pairs in A×B of distance in (α, β] is at most L. Furthermore,

if this number is larger than L, our algorithm provides a sample of these pairs, of

logarithmic size, that contains, with high probability, a pair at approximate median

distance (in the middle three quarters of the distances in (α, β]). We combine this

algorithm with a binary search to obtain a procedure that produces an interval that

contains the optimal distance as well as at most L other distances. Finally we use

the decision procedure in order to find the optimal value among these L remaining

distances in O(L(m+n)) time. As L increases, the first stage becomes faster and the

second stage becomes slower. Choosing L to balance the two gives us an algorithm

for the one-sided version that runs in O((m+ n)5/4+ε) time for any ε > 0.

In [AFK+14] a more sophisticated technique is given in addition, that again uses

the decision procedure in order to find the optimal value among these L remaining

distances in O((m + n)L1/2 log(m + n)) time. Choosing the optimal L yields an

algorithm that runs in O((m+ n)6/5+ε) time for any ε > 0.

We also use the above algorithm to solve the semi-continuous version of the
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one-sided Fréchet distance with shortcuts in a similar manner. In this problem

A is a sequence of m points and f ⊆ R2 is a polygonal curve of n edges. A frog

has to jump over the points in A, connected by a leash to a person who walks on

f . The frog can make shortcuts and skip points, but the person must traverse f

continuously. The frog and the person cannot backtrack. We want to compute the

minimum length of a leash that allows the frog and the person to get to their final

positions in such a scenario. In Section 2.6 we give an overview of an algorithm that

runs in O((m+n)2/3m2/3n1/3 log(m+n)) expected time for this problem. While less

efficient than the fully discrete version, it is still significantly subquadratic.

For the two-sided version we take a different approach. More specifically, we

implement the decision procedure by using an implicit compact representation of

all pairs in A×B at distance at most δ as the disjoint union of complete bipartite

cliques [KS97]. This representation allows us to maintain the pairs reachable by

the frogs with a leash of length at most δ implicitly and efficiently. The cost of

the decision procedure is O((m2/3n2/3 +m+ n) log2(m+ n)), which is comparable

with the cost of the distance selection procedure of [KS97], as mentioned above. We

can then run a binary search for the optimal distance, using this distance selection

procedure. The resulting algorithm runs in O((m2/3n2/3 +m+ n) log3(m+ n)) time

and requires O((m2/3n2/3 +m+ n) log(m+ n)) space.

Interestingly, the algorithms developed for these variants of the discrete Fréchet

distance problem are sublinear in the size of A × B and way below the slightly

subquadratic bound for the discrete Fréchet distance, obtained in [AAKS14].

In principle, the algorithm for the one-sided Fréchet distance with shortcuts can

be generalized to work in higher dimensions. More details are given in the full version

of the paper [AFK+14].

Related work. As already noted, the (one-sided) continuous Fréchet distance with

shortcuts was first studied by Driemel and Har-Peled [DH13]. They considered the

problem where shortcuts are allowed only between vertices of the noise-containing

curve, in the manner outlined above, and gave approximation algorithms for solving

two variants of this problem. In the first variant, any number of shortcuts is allowed,

and in the second variant, the number of allowed shortcuts is at most k, for some

k ∈ N. Their algorithms work efficiently only for c-packed polygonal curves. Both

algorithms compute a (3 + ε)-approximation of the Fréchet distance with shortcuts

between two c-packed polygonal curves and both run in near-linear time (ignoring

the dependence on ε). Buchin et al. [BDS14] consider a more general version of

the (one-sided) continuous Fréchet distance with shortcuts, where shortcuts are

allowed between any pair of points of the noise-containing curve. They show that this

problem is NP-Hard. They also give a 3-approximation algorithm for the decision

version of this problem that runs in O(n3 log n) time.
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In contrast with the results just reviewed, our results are somewhat surprising, as

they demonstrate that both variants of the discrete Fréchet distance with shortcuts

are easier to compute (exactly, with no restriction on the input) than all previously

studied variants of the Fréchet distance.

We also note that there have been several other works that treat outliers in different

ways. One such result is of Buchin et al. [BBW09], who considered the partial Fréchet

similarity problem, where one is given two curves f and g, and a distance threshold

δ, and the goal is to maximize the total length of the portions of f and g that are

matched (using the Fréchet distance paradigm) with Lp-distance smaller than δ.

They gave an algorithm that solves this problem in O(mn(m + n) log(mn)) time,

under the L1 or L∞ norm. The definition of the partial Fréchet similarity aims at

situations where the extent of a pre-required similarity is known (and given by the

distance threshold δ), and we wish to know how much (and which parts) of the curves

are similar to this extent. The definition of the (one-sided and two-sided) Fréchet

with shortcuts is practically used in cases where we have a pre-assumption that the

curves are similar, up to the existence of (not too many) outliers, and we want to

estimate the magnitude of this similarity, eliminating the outliers. Since we assume

that the points are sampled along curves that we want to match, our algorithms

are applicable to any scenario in which the continuous Fréchet with shortcuts is

applicable. Practical implementations of Fréchet distance algorithms that are made

for experiments on real data in map matching applications, remove outliers from the

data set [CDG+11, WSP06]. In another map matching application, Brakatsoulas

et al. [BPSW05] define the notion of integral Fréchet distance to deal with outliers.

This distance measure averages over certain distances instead of taking the maximum.

Bereg et al. [BJW+08] and then Wylie and Zho [WZ13] considered the discrete

Fréchet distance in biological context, for protein (backbone) structure alignment

and comparison. They use pair simplification of the protein backbones, that can be

interpreted as making shortcuts while comparing them under the discrete Fréchet

distance.

2.2 Preliminaries

A formal definition of the discrete Fréchet distance was given in Section 1.1. However,

in this chapter we prefer to use a an equivalent graph-based formal definition of the

discrete Fréchet distance and its variants with shortcuts.

Let A = (a1, . . . , am) and B = (b1, . . . , bn) be two sequences of m and n points,

respectively, in the plane. Let G(V,E) denote a graph whose vertex set is V and

edge set is E, and let ∥ · ∥ denote the Euclidean norm. Fix a distance δ > 0, and

define the following three directed graphs Gδ = G(A×B,Eδ), G
−
δ = G(A×B,E−

δ ),
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and G+
δ = G(A×B,E+

δ ), where

Eδ =
{(

(ai, bj), (ai+1, bj)
) ∣∣∣ ∥ai − bj∥, ∥ai+1 − bj∥ ≤ δ

}⋃
{(

(ai, bj), (ai, bj+1)
) ∣∣∣ ∥ai − bj∥, ∥ai − bj+1∥ ≤ δ

}
,

E−
δ =

{(
(ai, bj), (ak, bj)

) ∣∣∣ k > i, ∥ai − bj∥, ∥ak − bj∥ ≤ δ
}⋃

{(
(ai, bj), (ai, bj+1)

) ∣∣∣ ∥ai − bj∥, ∥ai − bj+1∥ ≤ δ
}
,

E+
δ =

{(
(ai, bj), (ak, bj)

) ∣∣∣ k > i, ∥ai − bj∥, ∥ak − bj∥ ≤ δ
}⋃

{(
(ai, bj), (ai, bl)

) ∣∣∣ l > j, ∥ai − bj∥, ∥ai − bl∥ ≤ δ
}
.

For each of these graphs we say that a position (ai, bj) is a reachable position if

(ai, bj) is reachable from (a1, b1) in the respective graph.

Then the discrete Fréchet distance ddF (A,B) is the smallest δ ≥ 0 for which

(am, bn) is a reachable position in Gδ.

Similarly, the one-sided Fréchet distance with shortcuts (one-sided DFDS for

short) d−dF (A,B) is the smallest δ ≥ 0 for which (am, bn) is a reachable position in

G−
δ , and the two-sided Fréchet distance with shortcuts (two-sided DFDS for short)

d+dF (A,B) is the smallest δ > 0 for which (am, bn) is a reachable position in G+
δ .

2.3 Decision algorithm for the one-sided DFDS

We first consider the corresponding decision problem. That is, given a value δ ≥ 0,

we wish to decide whether d−dF (A,B) ≤ δ (we ignore the issue of discrimination

between the cases of strict inequality and equality, in the decision procedures of both

the one-sided variant and the two-sided variant, since this will be handled in the

optimization procedures, described later).
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Figure 2.1: (a) A right-upward staircase (for DFD with no simultaneous jumps). (b) A semi-sparse
staircase (for the one-sided DFDS). (c) A sparse staircase (for the two-sided DFDS).

Let M be the matrix whose rows correspond to the elements of A and whose

columns correspond to the elements of B, and Mi,j = 1 if ∥ai− bj∥ ≤ δ, and Mi,j = 0

otherwise. Consider first the DFD variant (no shortcuts allowed), in which, at each

move, exactly one of the frogs has to jump to the next point. Suppose that (ai, bj)
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is a reachable position of the frogs. Then, necessarily, Mi,j = 1. If Mi+1,j = 1 then

the next move can be an upward move in which the A-frog moves from ai to ai+1,

and if Mi,j+1 = 1 then the next move can be a right move in which the B-frog

moves from bj to bj+1. It follows that to determine whether ddF (A,B) ≤ δ, we need

to determine whether there is a right-upward staircase of ones in M that starts

at M1,1, ends at Mm,n, and consists of a sequence of interweaving upward moves and

right moves (see Figure 2.1(a)).

In the one-sided version of DFDS, given a reachable position (ai, bj) of the frogs,

the A-frog can move to any point ak, k > i, for which Mk,j = 1; this is a skipping

upward move in M which starts at Mi,j = 1, skips over Mi+1,j, . . . ,Mk−1,j (some

of which may be 0), and reaches Mk,j = 1. However, in this variant, as in the DFD

variant, the B-frog can only make a consecutive right move from bj to bj+1, provided

that Mi,j+1 = 1 (otherwise no move of the B-frog is possible at this position).

Determining whether d−dF (A,B) ≤ δ corresponds to deciding whether there is a

semi-sparse staircase of ones in M that starts at M1,1, ends at Mm,n, and consists

of an interweaving sequence of skipping upward moves and (consecutive) right moves

(see Figure 2.1(b)).

Assume that M1,1 = 1 and Mm,n = 1; otherwise, we can immediately conclude

that d−dF (A,B) > δ and terminate the decision procedure. From now on, whenever

we refer to a semi-sparse staircase, we mean a semi-sparse staircase of ones in M

starting at M1,1, as defined above, but without the requirement that it ends at Mm,n.

Algorithm 2.1 Decision procedure for the one-sided discrete Fréchet distance with
shortcuts.

� S ← ⟨M1,1⟩
� i← 1, j ← 1
� While (i < m or j < n) do

– If (a right move is possible) then

* Make a right move and add position Mi,j+1 to S
* j ← j + 1

– Else
* If (a skipping upward move is possible) then

· Move upwards to the first (i.e., lowest) position Mk,j , with k > i and Mk,j = 1,
and add Mk,j to S

· i← k
* Else

· Return d−dF (A,B) > δ

� Return d−dF (A,B) ≤ δ

Algorithm 2.1 constructs a semi-sparse staircase S by always making a right move

if possible. The correctness of the decision procedure is established by the following

lemma.

Lemma 2.1. If there exists a semi-sparse staircase that ends at Mm,n, then S also

ends at Mm,n. Hence S ends at Mm,n if and only if d−dF (A,B) ≤ δ.
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Proof. Let S ′ be a semi-sparse staircase that ends at Mm,n. We think of S ′ as a

sequence of possible positions (i.e., 1-entries) in M . Note that S ′ has at least one

position in each column of M , since skipping is not allowed when moving rightwards.

We claim that for each position Mk,j in S ′, there exists a position Mi,j in S, such

that i ≤ k. This, in particular, implies that S reaches the last column. If S reaches

the last column, we can continue it and reach Mm,n by a sequence of skipping upward

moves (or just by one such move), so the lemma follows.

We prove the claim by induction on j. It clearly holds for j = 1 as both S and S ′

start at M1,1. We assume then that the claim holds for j = ℓ− 1, and establish it

for ℓ. That is, assume that if S ′ contains an entry Mk,ℓ−1, then S contains Mi,ℓ−1

for some i ≤ k. Let Mk′,ℓ be the lowest position of S ′ in column ℓ; clearly, k′ ≥ k.

We must have Mk′,ℓ−1 = 1 (as the only way to move from a column to the next is

by a right move). If Mi,ℓ = 1 then Mi,ℓ is added to S by making a right move, and

i ≤ k ≤ k′ as required. Otherwise, S is extended by a sequence of skipping upward

moves in column ℓ− 1 followed by a right move between Mi′,ℓ−1 and Mi′,ℓ where i
′ is

the smallest index ≥ i for which both Mi′,ℓ−1 and Mi′,ℓ are one. But since i ≤ k′ and

Mk′,ℓ−1 and Mk′,ℓ are both 1, we get that i′ ≤ k′, as required.

Running time. The entries of M that the decision procedure tests form a row-

and column-monotone path, with an additional entry to the right for each upward

turn of the path. (This also takes into account the 0-entries of M that are inspected

during a skipping upward move.) Therefore it runs in O(m+ n) time.

2.4 One-sided DFDS via approximate distance counting and

selection

We now show how to use the decision procedure of Algorithm 2.1 to solve the

optimization problem of the one-sided discrete Fréchet distance with shortcuts. This

is based on the algorithm provided in Lemma 2.2 given below.

First note that if we increase δ continuously, the set of 1-entries of M can only

grow, and this can only happen when δ is a distance between a point of A and a

point of B. Performing a binary search over the O(mn) pairwise distances of pairs

in A × B can be done using the distance selection algorithm of [KS97]. This will

be the method of choice for the two-sided DFDS problem, treated in Section 2.5.

Here however, this procedure, which takes O(m2/3n2/3 log3(m+ n)) time is rather

excessive when compared to the linear cost of the decision procedure. While solving

the optimization problem in close to linear time is still a challenging open problem,

we manage to improve the running time considerably, to O((m+ n)5/4+ε), for any

ε > 0.
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Lemma 2.2. Given a set A of m points and a set B of n points in the plane, an

interval (α, β] ⊂ R, and parameters 0 < L ≤ mn and ε > 0, we can determine,

with high probability, whether (α, β] contains at most L distances between pairs

in A × B. If (α, β] contains more than L such distances, we return a sample

of O(log(m + n)) pairs, so that, with high probability, at least one of these pairs

determines an approximate median (in the middle three quarters) of the pairwise

distances that lie in (α, β]. Our algorithm runs in O((m + n)4/3+ε/L1/3 + m + n)

time and uses O((m+ n)4/3+ε/L1/3 +m+ n) space.

The proof of Lemma 2.2 can be found in [AFK+14]. We believe that this technique

is of independent interest, beyond the scope of computing the one-sided Fréchet

distance with shortcuts, and that it may be applicable to other optimization problems

over pairwise distances.

The way it is described, the algorithm does not verify that the samples that it

returns satisfy the desired properties, nor does it verify that the number of distances

in (α, β] is indeed at most L, when it makes this assertion. As such, the running

time is deterministic, and the algorithm succeeds with high probability (which can

be calibrated by the choice of the constants c1, c2). See below for another comment

regarding this issue.

We use the procedure provided by Lemma 2.2 to find an interval (α, β] that

contains at most L distances between pairs of A×B, including d−dF (A,B). We find

this interval using binary search, starting with (α, β] = (0,∞), say. In each step of

the search, we run the algorithm of Lemma 2.2. If it determines that the number

of critical distances in (α, β] is at most L we stop. (The concrete choice of L that

we will use is given later.) Otherwise, the algorithm returns a random sample R

that contains, with high probability, an approximate median (in the middle three

quarters) of the distances in (α, β]. We then find two consecutive distances α′, β′ in

R such that d−dF (A,B) ∈ (α′, β′], using the decision procedure (see Algorithm 2.1).

(α′, β′] is a subinterval of (α, β] that contains, with high probability, at most 7/8

of the distances in (α, β]. We then proceed to the next step of the binary search,

applying again the algorithm of Lemma 2.2 to the new interval (α′, β′]. The resulting

algorithm runs in O((m+ n)4/3+ε/L1/3 + (m+ n) log(m+ n)) time, for any ε > 0.

Once we have narrowed down the interval (α, β], so that it now contains at most

L distances between pairs of A×B, including d−dF (A,B), we can find d−dF (A,B) by

simulating the execution of the decision procedure at the unknown d−dF (A,B). A

simple way of doing this is as follows. To determine whether Mi,j = 1 at d−dF (A,B),

we compute the critical distance r′ = ∥ai − bj∥ at which Mi,j becomes 1. If r′ ≤ α

then Mi,j = 0, and if r′ ≥ β then Mi,j = 1. Otherwise, α < r′ < β is one of the

at most L distances in (α, β]. In this case we run the decision procedure at r′ to

determine Mi,j . Since there are at most L distances in (α, β], the total running time

is O(L(m+ n)). By picking L = (m+ n)1/4+ε for another, but still arbitrarily small
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ε > 0, we balance the bounds of O((m + n)4/3+ε/L1/3 + (m + n) log(m + n)) and

O(L(m+n)), and obtain the bound of O((m+n)5/4+ε), for any ε > 0, on the overall

running time.

Although this significantly improves the naive implementation mentioned earlier,

it suffers from the weakness that it has to run the decision procedure separately

for each distance in (α, β] that we encounter during the simulation. In [AFK+14]

we show how to accumulate several unknown distances and resolve them all using

a binary search that is guided by the decision procedure. This allows us to find

d−dF (A,B) within the interval (α, β] more efficiently, in O((m+ n)L1/2 log(m+ n))

time. Choosing the optimal L yields an algorithm that runs in O((m+ n)6/5+ε) time

for any ε > 0. Details can be found in the full version of the paper [AFK+14].

Theorem 2.3. Given a set A of m points and a set B of n points in the plane, and

a parameter ε > 0, we can compute the one-sided discrete Fréchet distance d−dF (A,B)

with shortcuts in randomized expected time O((m+ n)6/5+ε) using O((m+ n)6/5+ε)

space.

2.5 The two-sided DFDS

We first consider the corresponding decision problem. That is, given δ > 0, we wish

to decide whether d+dF (A,B) ≤ δ.

Consider the matrix M as defined in Section 2.3. In the two-sided version of

DFDS, given a reachable position (ai, bj) of the frogs, the A-frog can make a skipping

upward move, as in the one-sided variant, to any point ak, k > i, for which Mk,j = 1.

Alternatively, the B-frog can jump to any point bl, l > j, for which Mi,l = 1; this

is a skipping right move in M from Mi,j = 1 to Mi,l = 1, defined analogously.

Determining whether d+dF (A,B) ≤ δ corresponds to deciding whether there exists a

sparse staircase of ones in M that starts at M1,1, ends at Mm,n, and consists of

an interweaving sequence of skipping upward moves and skipping right moves (see

Figure 2.1(c)).

Katz and Sharir [KS97] showed that the set S = {(ai, bj) | ∥ai − bj∥ ≤ δ} =

{(ai, bj) |Mi,j = 1} can be computed, in O((m2/3n2/3+m+n) log n) time and space,

as the union of the edge sets of a collection Γ = {At×Bt | At ⊆ A, Bt ⊆ B} of edge-
disjoint complete bipartite graphs. The number of graphs in Γ is O(m2/3n2/3+m+n),

and the overall sizes of their vertex sets are∑
t

|At|,
∑
t

|Bt| = O((m2/3n2/3 +m+ n) log n).

We store each graph At ×Bt ∈ Γ as a pair of sorted linked lists LAt and LBt over

the points of At and of Bt, respectively. For each graph At×Bt ∈ Γ, there is 1 in each

entry Mi,j such that (ai, bj) ∈ At ×Bt. That is, At ×Bt corresponds to a submatrix
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M (t) of ones in M (whose rows and columns are not necessarily consecutive). See

Figure 2.2(a).

Note that if (ai, bj) ∈ At ×Bt is a reachable position of the frogs, then every pair

in the set {(ak, bl) ∈ At × Bt | k ≥ i, l ≥ j} is also a reachable position. (In other

words, the positions in the upper-right submatrix of M (t) whose lower-left entry is

Mi,j are all reachable; see Figure 2.2(b)).
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Figure 2.2: (a) A possible representation of the matrix M as a collection of submatrices of ones,
corresponding to the complete bipartite graphs {a1, a2} × {b1, b2}, {a1, a3, a5} × {b4, b6}, {a1, a3} ×
{b7, b11}, {a2, a3, a5}×{b5, b8, b9}, {a4, a7, a8}×{b3, b4}, {a4, a7}×{b8, b10}, {a6}×{b9, b11}, {a8}×
{b9, b12}. (b) Another matrix M , similarly decomposed, where the reachable positions are marked
with an x.

We say that a graph At × Bt ∈ Γ intersects a row i (resp., a column j) in M

if ai ∈ At (resp., bj ∈ Bt). We denote the subset of graphs of Γ that intersect the

ith row of M by Γr
i and those that intersect the jth column by Γc

j. The sets Γr
i

are easily constructed from the lists LAt of the graphs in Γ, and are maintained

as linked lists. Similarly, the sets Γc
j are constructed from the lists LBt , and are

maintained as doubly-linked lists, so as to facilitate deletions of elements from them.

We have
∑

i |Γr
i | =

∑
t |At| = O((m2/3n2/3 +m+ n) log n) and

∑
j |Γc

j| =
∑

t |Bt| =
O((m2/3n2/3 +m+ n) log n).

We define a 1-entry (ak, bj) to be reachable from below row i, if k ≥ i and there

exists an entry (aℓ, bj), ℓ < i, which is reachable. We process the rows of M in

increasing order and for each graph At ×Bt ∈ Γ maintain a reachability variable vt,

which is initially set to ∞. We maintain the invariant that when we start processing

row i, if At × Bt intersects at least one row that is not below the ith row, then vt

stores the smallest index j for which there exists an entry (ak, bj) ∈ At ×Bt that is

reachable from below row i.

Before we start processing the rows of M , we verify that M1,1 = 1 and Mm,n = 1,

and abort the computation if this is not the case, determining that d+dF (A,B) > δ.

Assuming that M1,1 = 1, each position in P1 = {(a1, bl) | M1,l = 1} is a

reachable position. It follows that for each graph At × Bt ∈ Γ, vt should be set to

min{l | At ×Bt ∈ Γc
l and (a1, bl) ∈ P1}. Note that graphs At ×Bt in this set are not

necessarily in Γr
1. We update the vt’s using this rule, as follows. We first compute P1,

the set of pairs, each consisting of a1 and an element of the union of the lists LBt ,
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for At ×Bt ∈ Γr
1. Then, for each (a1, bl) ∈ P1, we set, for each graph Au ×Bu ∈ Γc

l ,

vu ← min{vu, l}.
In principle, this step should now be repeated for each row i. That is, we

should compute yi = min{vt | At × Bt ∈ Γr
i}; this is the index of the leftmost

entry of row i that is reachable from below row i. Next, we should compute

Pi = {(ai, bl) |Mi,l = 1 and l ≥ yi} as the union of those pairs that consist of ai and

an element of

{bj | bj ∈ LBt for At ×Bt ∈ Γr
i and j ≥ yi}.

The set Pi is the set of reachable positions in row i. Then we should set for each

(a1, bl) ∈ Pi and for each graph Au ×Bu ∈ Γc
l , vu ← min{vu, l}. This however is too

expensive, because it may make us construct explicitly all the 1-entries of M .

To reduce the cost of this step, we note that, for any graph At × Bt, as soon

as vt is set to some column l at some point during processing, we can remove bl

from LBt because its presence in this list has no effect on further updates of the vt’s.

Hence, at each step in which we examine a graph At × Bt ∈ Γc
l , for some column

l, we remove bl from LBt . This removes bl from any further consideration in rows

with index greater than i and, in particular, Γc
l will not be accessed anymore. This

is done also when processing the first row.

Specifically, we process the rows in increasing order and when we process row

i, we first compute yi = min{vt | At × Bt ∈ Γr
i}, in a straightforward manner. (If

i = 1, then we simply set y1 = 1.) Then we construct a set P ′
i ⊆ Pi of the “relevant”

(i.e., reachable) 1-entries in the i-th row as follows. For each graph At ×Bt ∈ Γr
i we

traverse (the current) LBt backwards, and for each bj ∈ LBt such that j ≥ yi we add

(ai, bj) to P ′
i . Then, for each (ai, bl) ∈ P ′

i , we go over all graphs Au ×Bu ∈ Γc
l , and

set vu ← min{vu, l}. After doing so, we remove bl from all the corresponding lists

LBu .

When we process row m (the last row of M), we set ym = min{vt | At×Bt ∈ Γr
m}.

If ym < ∞, we conclude that d+dF (A,B) ≤ δ (recalling that we already know that

Mm,n = 1). Otherwise, we conclude that d+dF (A,B) > δ.

Correctness. We need to show that d+dF (A,B) ≤ δ if and only if ym <∞ (when we

start processing row m). To this end, we establish in Lemma 2.4 that the invariant

stated above regarding vt indeed holds. Hence, if ym <∞, then the position (am, bym)

is reachable from below row m, implying that (am, bn) is also a reachable position

and thus d+dF (A,B) ≤ δ. Conversely, if d+dF (A,B) ≤ δ then (am, bn) is a reachable

position. So, either (am, bn) is reachable from below row m, or there exists a position

(am, bj), j < n, that is reachable from below row m (or both). In either case there

exists a graph At×Bt in Γr
m such that vt ≤ n and thus ym <∞. We next show that

the reachability variables vt of the graphs in Γ are maintained correctly.
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Lemma 2.4. For each i = 1, . . . ,m, the following property holds. Let At × Bt be

a graph in Γr
i , and let j denote the smallest index for which (ai, bj) ∈ At × Bt and

(ai, bj) is reachable from below row i. Then, when we start processing row i, we have

vt = j.

Proof. We prove this claim by induction on i. For i = 1, this claim holds trivially.

We assume then that i > 1 and that the claim is true for each row i′ < i, and show

that it also holds for row i.

Let At ×Bt be a graph in Γr
i , and let j denote the smallest index for which there

exists a position (ai, bj) ∈ At ×Bt that is reachable from below row i. We need to

show that vt = j when we start processing row i.

Since (ai, bj) is reachable from below row i, there exists a position (ak, bj), with

k < i, that is reachable, and we let k0 denote the smallest index for which (ak0 , bj) is

reachable. Let Ao×Bo be the graph containing (ak0 , bj). We first claim that when we

start processing row k0, bj was not yet deleted from LBo (nor from the corresponding

list of any other graph in Γc
j). Assume to the contrary that bj was deleted from LBo

before processing row k0. Then there exists a row z < k0 such that (az, bj) ∈ P ′
z and

we deleted bj from LBo when we processed row z. By the last assumption, (az, bj) is

a reachable position. This is a contradiction to k0 being the smallest index for which

(ak0 , bj) is reachable. (The same argument applies for any other graph, instead of

Ao ×Bo.)

We next show that vt ≤ j. Since (ak0 , bj) ∈ Ao ×Bo, Ao ×Bo ∈ Γr
k0
∩ Γc

j. Since

k0 is the smallest index for which (ak0 , bj) is reachable, there exists an index j0,

such that j0 < j and (ak0 , bj0) is reachable from below row k0. (If k0 = 1, we use

instead the starting placement (a1, b1).) It follows from the induction hypothesis

that yk0 ≤ j0 < j. Thus, when we processed row k0 and we went over LBo , we

encountered bj (as just argued, bj was still in that list), and we consequently updated

the reachability variables vu of each graph in Γc
j, including our graph At ×Bt to be

at most j.

(Note that if there is no position in At ×Bt that is reachable from below row i

(i.e., j =∞), we trivially have vt ≤ ∞.)

Finally, we show that vt = j. Assume to the contrary that vt = j1 < j when we

start processing row i. Then we have updated vt to hold j1 when we processed bj1 at

some row k1 < i. So, by the induction hypothesis, yk1 ≤ j1, and thus (ak1 , bj1) is a

reachable position. Moreover, At × Bt ∈ Γc
j1
, since vt has been updated to hold j1

when we processed bj1 . It follows that (ai, bj1) ∈ At×Bt. Hence, (ai, bj1) is reachable

from below row i. This is a contradiction to j being the smallest index such that

(ai, bj) is reachable from below row i. This establishes the induction step and thus

completes the proof of the lemma.
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Running Time. We first analyze the initialization cost of the data structure, and

then the cost of traversal of the rows for maintaining the variables vt.

� Initialization: Constructing Γ takes O((m2/3n2/3 +m + n) log(m + n)) time.

Sorting the lists LAt (resp., LBt) of each At ×Bt ∈ Γ takes O((m2/3n2/3 +m+

n) log2(m+n)) time. Constructing the lists Γr
i (resp., Γ

c
j) for each ai ∈ A (resp.,

bj ∈ B) takes time linear in the sum of the sizes of the At’s and the Bt’s, which

is O((m2/3n2/3 +m+ n) log(m+ n)).

� Traversing the rows: When we process row i we first compute yi by scanning

Γr
i . This takes a total of O (

∑
i |Γr

i |) = O((m2/3n2/3 +m+ n) log n) for all rows.

Since the lists LBt are sorted, the computation of P ′
i is linear in the size of

P ′
i . This is so because, once we have added a pair (ai, bj) to P ′

i , we remove bj

from all lists that contain it, so we will not encounter it again when scanning

other lists LBt′
. For each pair (ai, bℓ) ∈ P ′

i we scan Γc
ℓ, which must contain at

least one graph At ×Bt ∈ Γ such that ai ∈ At (and bj ∈ Bt). For each element

At×Bt ∈ Γc
ℓ we spend constant time updating vt and removing bℓ from LBt . It

follows that the total time, over all rows, of computing P ′
i and scanning the

lists Γc
ℓ is O (

∑
l |Γc

l |) = O((m2/3n2/3 +m+ n) log n).

We conclude that the total running time is O((m2/3n2/3 +m+ n) log2(m+ n)).

The optimization procedure. We use the above decision procedure for finding

the optimum d+dF (A,B), as follows. Note that if we increase δ continuously, the set

of 1-entries of M can only grow, and this can only happen at a distance between a

point of A and a point of B. We thus perform a binary search over the mn pairwise

distances between the pairs of A×B. In each step of the search we need to determine

the kth smallest pairwise distance rk in A × B, for some value of k. We do so by

using the distance selection algorithm of Katz and Sharir [KS97], which can easily be

adapted to work for this bichromatic scenario. We then run the decision procedure

on rk, using its output to guide the binary search. At the end of this search, we

obtain two consecutive critical distances δ1, δ2 such that δ1 < d+dF (A,B) ≤ δ2, and

we can therefore conclude that d+dF (A,B) = δ2. The running time of the distance

selection algorithm of [KS97] is O((m2/3n2/3 +m+ n) log2(m+ n)), which also holds

for the bipartite version that we use. We thus obtain the following main result of

this section.

Theorem 2.5. Given a set A of m points and a set B of n points in the plane, we

can compute the two-sided discrete Fréchet distance with shortcuts d+dF (A,B), in time

O((m2/3n2/3 +m+ n) log3(m+ n)), using O((m2/3n2/3 +m+ n) log(m+ n)) space.
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2.6 Semi-continuous Fréchet distance with shortcuts

Let f ⊆ R2 denote a polygonal curve with n edges e1, . . . , en and n + 1 vertices

p0, p1, . . . , pn, and let A = (a1, . . . , am) denote a sequence of m points in the plane.

Consider a person that is walking along f from its starting endpoint to its final

endpoint, and a frog that is jumping along the sequence A of stones. The frog

is allowed to make shortcuts (i.e., skip stones) as long as it traverses A in the

right (increasing) direction, but the person must trace the complete curve f (see

Figure 2.3(a)). Assuming that the person holds the frog by a leash, our goal is to

compute the minimal length dsdF (A, f) of a leash that is required in order to traverse

f and (parts of) A in this manner, taking the frog and the person from (a1, p0) to

(am, pn).

(a)

a1

a2

a3

a4

a5

(b)

f

f

a1

a4

a5

a2

a3

Figure 2.3: (a) A curve f and a sequence of points A = (a1, . . . , a5). (b) Thinking of f as a
continuous mapping from [0, 1] to R2, the ith row depicts the set {t ∈ [0, 1] | f(t) ∈ Dδ(ai)}.
The dotted subintervals and their connecting upward moves (not drawn) constitute the lowest
semi-sparse staircase between the starting and final positions.

We next very briefly review our algorithm. Details can be found in the full version

of the paper [AFK+14]. Consider the decision version of this problem, where, given

a parameter δ > 0, we wish to decide whether the person and the frog can traverse

f and (parts of) A using a leash of length δ. This problem can be solved using

the algorithm for solving the one-sided DFDS, with a slight modification that takes

into account the continuous nature of f . Specifically, for a point p ∈ R2, let Dδ(p)

denote the disk of radius δ centered at p. Now, consider a vector M whose entries

correspond to the points of A. For each i = 1, . . . ,m, the ith entry of M is

Mi = M(ai) = f ∩Dδ(ai)

(see Figure 2.3(b)). Each Mi is a finite union of connected subintervals of f . We do

not compute M explicitly, because the overall “description complexity” of its entries

might be too large. Specifically, the number of connected subsegments of the edges

of f that comprise the elements of M can be mn in the worst case.
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Instead, we assume availability of (efficient implementations of) the following two

primitives.

(i) NextEndpoint(x, ai): Given a point x ∈ f and a point ai of A, such that x ∈
Dδ(ai), return the forward endpoint of the connected component of f ∩Dδ(ai)

that contains x.

(ii) NextDisk(x, ai): Given x and ai, as in (i), find the smallest j > i such that

x ∈ Dδ(aj), or report that no such index exists (return j =∞).

Both primitives admit efficient implementations. For our purposes it is sufficient

to implement Primitive (i) by traversing the edges of f one by one, starting from

the edge containing x, and checking for each such edge ej of f whether the forward

endpoint pj of ej belongs to Dδ(ai). For the first ej for which this test fails, we return

the forward endpoint of the interval ej ∩Dδ(ai). It is also sufficient to implement

Primitive (ii) by checking for each j > i in increasing order, whether x ∈ Dδ(aj),

and return the first j for which this holds. To solve the decision problem, we proceed

as in the decision procedure of the one-sided DFDS (see Algorithm 2.1), except that

when we move “right”, we move along f as long as we can within the current disk

(using Primitive (i)), and when we move “up”, we move to the first following disk

that contains the current point of f (using Primitive (ii)).

The correctness of the decision procedure is proved similarly to the correctness of

the decision procedure of the one-sided DFDS (Algorithm 2.1). More specifically,

here a semi-continuous semi-sparse staircase is an interweaving sequence

of discrete skipping upward moves and continuous right moves, where a

discrete skipping upward move is a move from a reachable position (ai, p) of the

frog and the person to another position (aj, p) such that j > i and p ∈ Dδ(aj). A

continuous right move is a move from a reachable position (ai, p) of the frog and the

person to another position (ai, p
′) where p′, and the entire portion of f between p

and p′, are contained in Dδ(ai). Then there exists a semi-continuous semi-sparse

staircase that reaches the position (am, pn) if and only if δsF (A, f) ≤ δ.

Concerning correctness, we prove that if there exists a semi-continuous semi-sparse

staircase S ′ that reaches position (am, pn), then the decision procedure maintains a

partial semi-continuous semi-sparse staircase S that is always “below” S ′ (in terms

of the corresponding indices of the positions of the frog), and therefore S reaches

a position where the person is at pn (and the frog can then jump directly to am).

Intuitively, this holds since the decision procedure can at any point join the plot

of S ′ using a discrete skipping upward move. The running time of this decision

procedure is O(n+m) since we advance along f at each step of Primitive (i), and

we advance along A at each step of Primitive (ii), so our naive implementations of

these primitives never back up along the path and sequence, and consequently take

O(m+ n) time in total.



30 The Discrete Fréchet Distance with Shortcuts

We then present an algorithm that leads, in combination with the decision

procedure, to an algorithm for the optimization problem that runs in O((m +

n)2/3m2/3n1/3 log(m+ n)) randomized expected time. This algorithm is analogous to

the algorithm of Lemma 2.2 of the discrete case. This demonstrates that the general

framework of the optimization algorithm of Section 2.4 can be applied (with twists)

in other algorithms.



Chapter 3

The Discrete Fréchet Distance

under Translation

3.1 Introduction

In many applications of the Fréchet distance, the input curves are not necessarily

aligned, and one of them needs to be adjusted (i.e., undergo some transformation)

for the distance computation to be meaningful. In this chapter we consider the

discrete Fréchet distance under translation, in which we are given two sequences of

points A = (a1, . . . , an) and B = (b1, . . . , bm), and wish to find a translation t that

minimizes the discrete Fréchet distance between A and B + t.

For points in the plane, Alt et al. [AKW01] gave an O(m3n3(m+n)2 log(m+n))-

time algorithm for computing the continuous Fréchet distance under translation, and

an algorithm computing a (1 + ε)-approximation in O(ε−2mn) time. In 3D, Wenk

[Wen03] showed that the continuous Fréchet distance under any reasonable family of

transformations, can be computed in O((m+n)3f+2 log(m+n)) time, where f is the

number of degrees of freedom for moving one sequence w.r.t. the other. Thus, for

translations only (f = 3), the continuous Fréchet distance in R3 can be computed in

O((m+ n)11 log(m+ n)) time.

In the discrete case, the situation is a little better. For points in the plane, Jiang

et al. [JXZ08] gave an O(m3n3 log(m+n))-time algorithm for DFD under translation,

and an O(m4n4 log(m + n))-time algorithm when both translations and rotations

are allowed. Mosig et al. [MC05] presented an approximation algorithm for DFD

under translation, rotation and scaling in the plane, with approximation factor close

to 2 and running time O(m2n2). Finally, Ben Avraham et al. [AKS15] presented

an O(m3n2(1 + log(n/m)) log(m + n))-time algorithm for DFD under translation.

Their decision algorithm (deciding whether the distance is smaller than a given δ) is

based on a dynamic data structure which supports updates and reachability queries

in O(m(1 + log(n/m)) time. Given sequences A and B, the basic idea is to maintain

the reachability graph Gδ defined in Chapter 2, while traversing a subdivision of the

31
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plane of translations. The subdivision is such that when moving from one cell to

an adjacent one, only for a single pair of points in A×B their (Euclidean) distance

becomes smaller or larger than δ, thus only a constant number of edges in Gδ need

to be updated. Using a more general data structure of Diks and Sankowski [DS07]

for dynamic maintenance of reachability in directed planar graphs, one can obtain a

slightly less efficient algorithm for the problem.

Another related paper is by de Berg and Cook IV [dBI11], who presented the

direction-based Fréchet distance, which is invariant under translations and scalings.

This measure optimizes over all parameterizations for a pair of curves, but based

on differences between the directions of movement along the curves, rather than on

distances between the positions.

In this chapter we consider two variants of DFD, both under translation: the first

is discrete Fréchet distance with shortcuts (DFDS), and the second is weak discrete

Fréchet distance (WDFD), in which the frogs are allowed to jump also backwards to

the previous point in their sequence.

Our results. Our first major result is an efficient algorithm for DFDS under

translation. We provide a dynamic data structure which supports updates and

reachability queries in O(log(m+n)) time. The data structure is based on Sleator and

Tarjan’s Link-Cut Trees structure [ST83], and, by plugging it into the optimization

algorithm of Ben Avraham et al. [AKS15], we obtain an O(m2n2 log2(m+ n))-time

algorithm for DFDS under translation; an order of magnitude faster than the the

algorithm for DFD under translation.

For curves in 1D, the optimization algorithm of [AKS15] yields an O(m2n(1 +

log(n/m)) log(m+n))-time algorithm for DFD, using their reachability structure, an

O(mn log2(m+ n))-time algorithm for DFDS, using our reachability with shortcuts

structure, and an O(mn log2(m+ n)(log log(m+ n))3)-time algorithm for WDFD,

using the reachability structure of Thorup [Tho00] for undirected general graphs.

We describe a simpler optimization algorithm for 1D, which avoids the need for

parametric search and yields an O(m2n(1 + log(n/m)))-time algorithm for DFD, an

O(mn log(m+ n))-time algorithm for DFDS, and an O(mn log(m+ n)(log log(m+

n))3)-time algorithm for WDFD; i.e., we remove a logarithmic factor from the bounds

obtained with the algorithm of Ben Avraham et al.

Our optimization algorithm for 1D follows a general scheme introduced by Martello

et al. [MPTDW84] for the Balanced Optimization Problem (BOP). BOP is defined

as follows. Let E = {e1, . . . , el} be a set of l elements (where here l = O(mn)),

c : E → R a cost function, and F a set of feasible subsets of E. Find a feasible subset

S∗ ∈ F that minimizes max{c(ei) : ei ∈ S} − min{c(ei) : ei ∈ S}, over all S ∈ F .
Given a feasibility decider that decides whether a subset is feasible or not in f(l)

time, the algorithm of [MPTDW84] finds an optimal range in O(lf(l) + l log l)-time.
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The scheme of [MPTDW84] is especially useful when an efficient dynamic version

of the feasibility decider is available, as in the cases of DFD (where f(l) = O(m(1 +

log(n/m)))), DFDS (where f(l) = O(log(m + n))), and WDFD (where f(l) =

O(log(m+ n)(log log(m+ n))3))1.

Our second major result is an alternative scheme for BOP. Our optimization

scheme does not require a specially tailored dynamic version of the feasibility decider

in order to obtain faster algorithms (than the naive O(lf(l) + l log l) one), rather,

whenever the underlying problem has some desirable properties, it produces algo-

rithms with running time O(f(l) log2 l + l log l). Thus, the advantage of our scheme

is that it yields efficient algorithms quite easily, without having to devise an efficient

dynamic version of the feasibility decider, a task which is often difficult if at all

possible.

We demonstrate our scheme on the most uniform path problem (MUPP). Given

a weighted graph G = (V,E,w) with n vertices and m edges and two vertices

s, t ∈ V , the goal is to find a path P ∗ in G between s and t that minimizes

max{w(e) : e ∈ P} −min{w(e) : e ∈ P}, over all paths P from s to t. This problem

was introduced by Hansen et al. [HSV97], who gave an O(m2)-time algorithm for

it. By using the dynamic connectivity data structure of Thorup [Tho00], one can

reduce the running time to O(m log n(log log n)3). We apply our scheme to MUPP

to obtain a much simpler algorithm with a slightly larger (O(m log2 n)) running time.

Finally, we observe that WDFD under translation in 1D can be viewed as a special

case of MUPP, so we immediately obtain a much simpler algorithm than the one

based on Thorup’s dynamic data structure (see above), at the cost of an additional

logarithmic factor.

3.2 Preliminaries

The definition of discrete Fréchet distance that we use in this chapter is almost

similar to the graph definition in Chapter 2, but with a little modification that allows

us to describe a dynamic data structure on this graph.

Let A = (a1, . . . , an) and B = (b1, . . . , bm) be two sequences of points. We define

a directed graph G = G(V = A × B,E = EA ∪ EB ∪ EAB), whose vertices are

the possible positions of the frogs and whose edges are the possible moves between

positions:

EA = {⟨(ai, bj), (ai+1, bj)⟩} , EB = {⟨(ai, bj), (ai, bj+1)⟩} , EAB = {⟨(ai, bj), (ai+1, bj+1)⟩} .
The set EA corresponds to moves where only the A-frog jumps forward, the set

EB corresponds to moves where only the B-frog jumps forward, and the set EAB

1Actually, the query (decision) time in Thorup’s data structure is only O(log(m+n)/ log log log(m+n)),
but in each step of the search we also have to update the data structure in O(log(m+ n)(log log(m+ n))3)
time. The question whether logarithmic-time is achievable for both query and update (of connectivity in
general graphs) is still open.
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corresponds to moves where both frogs jump forward. Notice that any valid sequence

of moves (with unlimited leash length) corresponds to a path in G from (a1, b1) to

(an, bm), and vice versa.

It is likely that not all positions in A×B are valid; for example, when the leash is

short. We thus assume that we are given an indicator function σ : A×B → {0, 1},
which determines for each position whether it is valid or not. Now, we say that

a position (ai, bj) is a reachable position (w.r.t. σ), if there exists a path P in

G from (a1, b1) to (ai, bj), consisting of only valid positions, i.e., for each position

(ak, bl) ∈ P , we have σ(ak, bl) = 1.

Let d(ai, bj) denote the Euclidean distance between ai and bj. For any distance

δ ≥ 0, the function σδ is defined as follows: σδ(ai, bj) =

1, d(ai, bj) ≤ δ

0, otherwise
.

The discrete Fréchet distance ddF (A,B) is the smallest δ ≥ 0 for which

(an, bm) is a reachable position w.r.t. σδ.

One-sided shortcuts. Let σ be an indicator function. We say that a position (ai, bj)

is an s-reachable position (w.r.t. σ), if there exists a path P in G from (a1, b1) to

(ai, bj), such that σ(a1, b1) = 1, σ(ai, bj) = 1, and for each bl, 1 < l < j, there exists a

position (ak, bl) ∈ P that is valid (i.e., σ(ak, bl) = 1). We call such a path an s-path.

In general, an s-path consists of both valid and non-valid positions. Consider the

sequence S of positions that is obtained from P by deleting the non-valid positions.

Then S corresponds to a sequence of moves, where the A-frog is allowed to skip

points, and the leash satisfies σ. Since in any path in G the two indices (of the

A-points and of the B-points) are monotonically non-decreasing, it follows that in S

the B-frog visits each of the points b1, . . . , bj , in order, while the A-frog visits only a

subset of the points a1, . . . , ai (including a1 and ai), in order.

The discrete Fréchet distance with shortcuts dsdF (A,B) is the smallest

δ ≥ 0 for which (an, bm) is an s-reachable position w.r.t. σδ.

Weak Fréchet distance. Let Gw = G(V = A×B,Ew), where Ew = {(u, v)|⟨u, v⟩ ∈
EA ∪ EB ∪ EAB}. That is, Gw is an undirected graph obtained from the graph G

of the ‘strong’ version, which contains directed edges, by removing the directions

from the edges. Let σ be an indicator function. We say that a position (ai, bj) is

a w-reachable position (w.r.t. σ), if there exists a path P in Gw from (a1, b1) to

(ai, bj) consisting of only valid positions. Such a path corresponds to a sequence of

moves of the frogs, with a leash satisfying σ, where backtracking is allowed.

The weak discrete Fréchet distance dwdF (A,B) is the smallest δ ≥ 0 for which

(an, bm) is a w-reachable position w.r.t. σδ.
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The translation problem. Given two sequences of points A = (a1, . . . , an) and

B = (b1, . . . , bm), we wish to find a translation t∗ that minimizes ddF (A,B + t)

(similarly, dsdF (A,B + t) and dwdF (A,B + t)), over all translations t. Denote

d̂dF (A,B) =min
t
{ddF (A,B + t)},

d̂sdF (A,B) =min
t
{dsdF (A,B + t)}, and

d̂wdF (A,B) =min
t
{dwdF (A,B + t)}.

3.3 DFDS under translation

The discrete Fréchet distance (and its shortcuts variant) between A and B is deter-

mined by two points, one from A and one from B. Consider the decision version

of the translation problem: given a distance δ, decide whether d̂dF (A,B) ≤ δ (or

d̂sdF (A,B) ≤ δ).

Ben Avaraham et al. [AKS15] described a subdivision of the plane of translations:

given two points a ∈ A and b ∈ B, consider the disk Dδ(a− b) of radius δ centered at

a−b, and notice that t ∈ Dδ(a−b) if and only if d(a−b, t) ≤ δ (or d(a, b+t) ≤ δ). That

is, Dδ(a−b) is precisely the set of translations t for which b+t is at distance at most δ

from a. They construct the arrangement Aδ of the disks in {Dδ(a−b) | (a, b) ∈ A×B},
which consists of O(m2n2) cells. Then, they initialize their dynamic data structure

for (discrete Fréchet) reachability queries, and traverse the cells of Aδ such that,

when moving from one cell to its neighbor, the dynamic data structure is updated

and queried a constant number of times in O(m(1 + log(n/m)) time. Finally, they

use parametric search in order to find an optimal translation, which adds only a

O(log(m+ n)) factor to the running time.

In this section we present a dynamic data structure for s-reachability queries,

which allows updates and queries in O(log(m+ n)) time. We observe that the same

parametric search can be used in the shortcuts variant, since the critical values are

the same. Thus, by combining our dynamic data structure with the parametric

search of [AKS15], we obtain an O(m2n2 log2(m + n))-time algorithm for DFDS

under translation.

We now describe the dynamic data structure for DFDS. Consider the decision

version of the problem: given a distance δ, we would like to determine whether

dsdF (A,B) ≤ δ, i.e., whether (an, bm) is an s-reachable position w.r.t. σδ. In Chapter 2,

we presented a linear time algorithm for this decision problem. Informally, the decision

algorithm on the graph G is as follows: starting at (a1, b1), the B-frog jumps forward

(one point at a time) as long as possible, while the A-frog stays in place, then the

A-frog makes the smallest forward jump needed to allow the B-frog to continue.

They continue advancing in this way, until they either reach (an, bm) or get stuck.
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Consider the (directed) graph2 Gδ = G(V = A×B,E = E ′
A ∪ E ′

B), where

E ′
A = {⟨(ai, bj), (ai+1, bj)⟩ | σδ(ai, bj) = 0, 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m} , and

E ′
B = {⟨(ai, bj), (ai, bj+1)⟩ | σδ(ai, bj) = 1, 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1} .

In Gδ, if the current position of the frogs is valid, only the B-frog may jump

forward and the A-frog stays in place. And, if the current position is non-valid,

the B-frog stays in place and only the A-frog may jump forward. Let Mδ be an

a1

a2

a3

an

...

b1 b2 b3 bn· · ·

Figure 3.1: The graph Gδ on the matrix Mδ. The black vertices are valid and the white
ones are non-valid.

n ×m matrix such that Mi,j = σδ(ai, bj). Each vertex in Gδ corresponds to a cell

of the matrix. The directed edges of Gδ correspond to right-moves (the B-frog

jumps forward) and upward-moves (the A-frog jumps forward) in the matrix. Any

right-move is an edge originating at a valid vertex, and any upward-move is an edge

originating at a non-valid vertex (see Figure 3.1).

Observation 3.1. Gδ is a set of rooted binary trees, where a root is a vertex of

out-degree 0.

Proof. Clearly, G is a directed acyclic graph, and Gδ is a subgraph of G. In Gδ, each

vertex has at most one outgoing edge. It is easy to see (by induction on the number

of vertices) that such a graph is a set of rooted trees.

We call a path P in G from (ai, bj) to (ai′ , bj′), i ≤ i′, j ≤ j′, a partial s-path,

if for each bl, j ≤ l < j′, there exists a position (ak, bl) ∈ P that is valid (i.e.,

σδ(ak, bl) = 1).

Observation 3.2. All the paths in Gδ are partial s-paths.

Proof. Let P be a path from (ai, bj) to (ai′ , bj′) in Gδ. Each right-move in P advances

the B-frog by one step forward. If j = j′ then the claim is vacuously true. Else,

P must contain a right-move for each bl, j ≤ l < j′. Any right-move is an edge

2Note that this definition of Gδ is different from the one we used in Chapter 2
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originating at a valid vertex, thus for any j ≤ l < j′ there exists a position (ak, bl) ∈ P

such that σδ(ak, bl) = 1.

Denote by r(ai, bj) the root of (ai, bj) in Gδ.

Lemma 3.3. (an, bm) is an s-reachable position in G w.r.t. σδ, if and only if

σδ(a1, b1) = 1, σδ(an, bm) = 1, and r(a1, b1) = (ai, bm) for some 1 ≤ i ≤ n.

Proof. Assume that σδ(a1, b1) = 1, σδ(an, bm) = 1, and r(a1, b1) = (ai, bm) for some

1 ≤ i ≤ n. Then by Observation 3.2 there is a partial s-path from (a1, b1) to (ai, bm)

in Gδ, and since σδ(a1, b1) = 1 and σδ(an, bm) = 1 we have an s-path from (a1, b1) to

(an, bm).

Now assume that (an, bm) is an s-reachable position in G w.r.t. σδ. Then, in

particular, σδ(a1, b1) = 1 and σδ(an, bm) = 1, and there exists an s-path P in G from

(a1, b1) to (an, bm). Let P ′ be the path in Gδ from (a1, b1) to r(a1, b1). Informally,

we claim that P ′ is always not above P . More precisely, we prove that if a position

(ai, bj) is an s-reachable position in G, then there exists a position (ai′ , bj) ∈ P ′,

i′ ≤ i, such that σδ(ai′ , bj) = 1. In particular, since (an, bm) is an s-reachable position

in G, there exists a position (ai′ , bm) ∈ P ′, i′ ≤ n, such that σδ(ai′ , bm) = 1, and thus

r(a1, b1) = (ai′′ , bm) for some i′ ≤ i′′ ≤ n.

We prove this claim by induction on j. The base case where j = 1 is trivial, since

(a1, b1) ∈ P ∩ P ′ and σδ(a1, b1) = 1. Let P be an s-path from (a1, b1) to (ai, bj+1),

then σδ(ai, bj+1) = 1. Let (ak, bj), k ≤ i, be a position in P such that σδ(ak, bj) = 1.

(ak, bj) is an s-reachable position in G, so by the induction hypothesis there exists

a vertex (ak′ , bj) ∈ P ′, k′ ≤ k, such that σδ(ak′ , bj) = 1. By the construction of

Gδ, there is an edge ⟨(ak′ , bj), (ak′ , bj+1)⟩, and we have (ak′ , bj+1) ∈ P ′. Now, let

k′ ≤ i′ ≤ i be the smallest index such that σδ(ai′ , bj+1) = 1. Since there are no

right-moves in P ′ before reaching (ai′ , bj+1), we have (ai′ , bj+1) ∈ P ′.

We represent Gδ using the Link-Cut tree data structure, which was developed

by Sleator and Tarjan [ST83]. The data structure stores a set of rooted trees and

supports the following operations in O(log n) amortized time:

� Link(v, u) — connect a root node v to another node u as its child.

� Cut(v) — disconnect the subtree rooted at v from the tree to which it belong.

� FindRoot(v) — find the root of the tree to which v belongs.

Now, in order to maintain the representation of Gδ following a single change in

σδ (i.e., when switching one position (ai, bj) from valid to non-valid or vice versa),

one edge should be removed and one edge should be added to the structure. We

update our structure as follows: Let T be the tree containing (ai, bj).
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� When switching (ai, bj) from valid to non-valid, we first need to remove the

edge ⟨(ai, bj), (ai, bj+1)⟩, if j < m, by disconnecting (ai, bj) (and its subtree)

from T (Cut(ai, bj)). Then, if i < n, we add the edge ⟨(ai, bj), (ai+1, bj)⟩ by
connecting (ai, bj) (which is now the root of its tree) to (ai+1, bj) as its child

(Link((ai, bj), (ai+1, bj))).

� When switching a position from non-valid to valid, we need to remove the

edge ⟨(ai, bj), (ai+1, bj)⟩, if i < n, by disconnecting (ai, bj) (and its subtree)

from T (Cut(ai, bj)). Then, if j < m, we add the edge ⟨(ai, bj), (ai, bj+1)⟩ by
connecting (ai, bj) (which is now the root of its tree) to (ai, bj+1) as its child

(Link((ai, bj), (ai, bj+1))).

Assume σδ(a1, b1) = σδ(an, bm) = 1. By Lemma 3.3, in the Link-Cut tree data

structure representing Gδ, FindRoot(a1, b1) is (ai, bm) for some 1 ≤ i ≤ n if and only

if (an, bm) is an s-reachable position in G w.r.t. σδ. We thus obtain the following

theorem.

Theorem 3.4. Given sequences A and B and an indicator function σδ, one can

construct a dynamic data structure in O(mn log(m+ n)) time, which supports the

following operations in O(log(m+ n)) time: (i) change a single value of σδ, and (ii)

check whether (an, bm) is an s-reachable position in G w.r.t. σδ.

Theorem 3.5. Given sequences A and B with n and m points respectively in the

plane, d̂sdF (A,B) can be computed in O(m2n2 log2(m+ n))-time.

3.4 Translation in 1D

The algorithm of [AKS15] can be generalized to any constant dimension d ≥ 1;

only the size of the arrangement of balls, Aδ, changes to O(mdnd). The running

time of the algorithm for two sequences of points in Rd is therefore O(md+1nd(1 +

log(n/m)) log(m+n)), for DFD,O(mdnd log2(m+n)) for DFDS, andO(mdnd log2(m+

n)(log log(m+ n))3) for WDFD; see relevant paragraph in Section 3.1.

When considering the translation problem in 1D, we can improve the bounds above

by a logarithmic factor, by avoiding the use of parametric search and applying a direct

approach instead. We thus obtain an O(m2n(1+log(n/m)))-time algorithm, for DFD,

an O(mn log(m+ n))-time algorithm for DFDS, and O(mn log(m+ n)(log log(m+

n))3)-time algorithm for WDFD.

Let A = (a1, . . . , an) and B = (b1, . . . , bm) be two sequences of points in Rd.

Consider the set D = {ai − bj | ai ∈ A, bj ∈ B}. Then, each vertex v = (ai, bj) of

the graph G has a corresponding point v = (ai − bj) in D. Given a path P in G

from (a1, b1) to (an, bm), denote by V (P ) the set of points of D corresponding to the
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vertices V (P ) of P . Denote by S(o, r) the sphere with center o and radius r. We

define a new indicator function: σS(o,r)(ai, bj) =

1, d(ai − bj, o) ≤ r

0, otherwise
.

Lemma 3.6. Let S = S(t∗, δ) be a smallest sphere for which (an, bm) is a reachable

position w.r.t. σS. Then, t
∗ is a translation that minimizes ddF (A,B + t), over all

translations t, and ddF (A,B + t∗) = δ.

Proof. Let t be a translation such that ddF (A,B + t) = δ′, and denote S ′ = S(t, δ′).

Thus, there exist a path P from (a1, b1) to (an, bm) in G such that for each vertex

(a, b) of P , d(a, b+ t) ≤ δ′. But d(a, b+ t) = d(a− b, t), so for each vertex (a, b) of

P , d(a − b, t) ≤ δ′, and thus (an, bm) is a reachable position w.r.t. σS′ . Since S is

the smallest sphere for which (an, bm) is a reachable position w.r.t. σS, we get that

δ′ ≥ δ.

Now, since (an, bm) is a reachable position w.r.t. σS, there exists a path P from

(a1, b1) to (an, bm), such that for each vertex (a, b) of P , d(a− b, t∗) ≤ δ. But again

d(a− b, t∗) = d(a, b+ t∗), and thus ddF (A,B + t∗) ≤ δ.

Notice that the above lemma is true for the shortcuts and the weak variants as

well, by letting (an, bm) be an s-reachable or a w-reachable position, respectively.

Thus, our goal is to find the smallest sphere S for which (an, bm) is a reachable

position w.r.t. σS. We can perform an exhaustive search: check for each sphere S

defined by d+1 points of D whether (an, bm) is a reachable position w.r.t. σS. There

are O(md+1nd+1) such spheres, and checking whether (an, bm) is a reachable position

in G takes O(mn) time. This yields an O(md+2nd+2)-time algorithm.

s (a1 − b1) (an − bm) t

Figure 3.2: The points of V (P ).

When considering the problem on the line, the goal is to find a path P from

(a1, b1) to (an, bm), such that the one-dimensional distance between the leftmost point

in V (P ) and the rightmost point in V (P ) is minimum (see Figure 3.2). In other

words, our indicator function is now defined for a given range [s, t]: σ[s,t](ai, bj) =1, s ≤ ai − bj ≤ t

0, otherwise
.

We say that a range [s, t] is a feasible range if (an, bm) is a reachable position

in G w.r.t σ[s,t]. Now, we need to find the smallest feasible range delimited by two

points of D.
Consider the following search procedure: Sort the values in D = {d1, . . . , dl} such

that d1 < d2 < · · · < dl, where l = mn. Set p← 1, q ← 1. While q ≤ l, if (an, bm) is
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a reachable position in G w.r.t. σ[dp,dq ], set p ← p + 1, else set q ← q + 1. Return

the translation corresponding to the smallest feasible range [dp, dq] that was found

during the while loop.

We use the data structure of [AKS15] for the decision queries, and update it in

O(m(1 + log(n/m)) time in each step of the algorithm. For DFDS we use our data

structure, where the cost of a decision query or an update is O(log(m+ n)), and for

WDFD we use the data structure of [Tho00], where the cost of a decision query is

O(log(m+ n)/ log log log(m+ n)) and an update is O(log(m+ n)(log log(m+ n))3).

Theorem 3.7. Let A and B be two sequences of n and m points (m ≤ n), respectively,

on the line. Then, d̂dF (A,B) can be computed in O(m2n(1 + log(n/m))) time,

d̂sdF (A,B) in O(mn log(m+n)) time, and d̂wdF (A,B) in O(mn log(m+n)(log log(m+

n))3).

3.5 A general scheme for BOP

In the previous section we showed that DFD, DFDS, and WDFD, all under translation

and in 1D, can be viewed as BOP. In this section, we present a general scheme

for BOP, which yields efficient algorithms quite easily, without having to devise an

efficient dynamic version of the feasibility decider.

BOP’s definition (see ??) is especially suited for graphs, where, naturally, E is

the set of weighted edges of the graph, and F is a family of well-defined structures,

such as matchings, paths, spanning trees, cut-sets, edge covers, etc.

Let G = (V,E,w) be a weighted graph, where V is a set of n vertices, E is a set of

m edges, and w : E → R is a weight function. Let F be a set of feasible subsets of E.

For a subset S ⊆ E, let Smax = max{w(e) : e ∈ S} and Smin = min{w(e) : e ∈ S}.
The Balanced Optimization Problem on Graphs (BOPG) is to find a feasible subset

S∗ ∈ F which minimizes Smax − Smin over all S ∈ F . A range [l, u] is a feasible

range if there exists a feasible subset S ∈ F such that w(e) ∈ [l, u] for each e ∈ S.

A feasibility decider is an algorithm that decides whether a given range is feasible.

We assume for simplicity that each edge has a unique weight. Our goal is to

find the smallest feasible range. First, we sort the m edges by their weights, and

let e1, e2, . . . , em be the resulting sequence. Let w1 = w(e1) < w2 = w(e2) < · · · <
wm = w(em).

Let M be the matrix whose rows correspond to w1, w2, . . . , wm and whose columns

correspond to w1, w2, . . . , wm (see Figure 3.3(a)). A cellMi,j of the matrix corresponds

to the range [wi, wj ]. Notice that some of the cells of M correspond to invalid ranges:

when i > j, we have wi > wj and thus [wi, wj] is not a valid range.

M is sorted in the sense that range Mi,j contains all the ranges Mi′,j′ with

i ≤ i′ ≤ j′ ≤ j. Thus, we can perform a binary search in the middle row to find the

smallest feasible range Mm
2
,j = [wm

2
, wj ] among the ranges in this row. Mm

2
,j induces
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(a)

w1 w2 wm. . .

...

wm
2

wm
2
. . .

...

wm

w1

w2

. . .wj

M1 M2

M3 M4

(b)

w1 w2 wm. . .

...

wm
2

wm
2
. . .

...

wm

w1

w2

. . .wj

(c)

w1 w2 wm. . .

...

wm
2

wm
2
. . .

...

wm

w1

w2

. . .wj

Figure 3.3: The matrix of possible ranges. (a) The shaded cells are invalid ranges. (b)
The cell Mm

2
,j induces a partition of M into 4 submatrices: M1,M2,M3,M4. (c) The four

submatrices at the end of the second level of the recursion tree.

a partition of M into 4 submatrices: M1,M2,M3,M4 (see Figure 3.3(b)). Each of

the ranges in M1 is contained in a range of the middle row which is not a feasible

range, hence none of the ranges in M1 is a feasible range. Each of the ranges in M4

contains Mm
2
,j and hence is at least as large as Mm

2
,j. Thus, we may ignore M1 and

M4 and focus only on the ranges in the submatrices M2 and M3.

Sketch of the algorithm. We perform a recursive search in the matrix M . The

input to a recursive call is a submatrix M ′ of M and a corresponding graph G′. Let

[wi, wj] be a range in M ′. The feasibility decider can decide whether [wi, wj] is a

feasible range or not by consulting the graph G′. In each recursive call, we perform a

binary search in the middle row of M ′ to find the smallest feasible range in this row,

using the corresponding graph G′. Then, we construct two new graphs for the two

submatrices of M ′ in which we still need to search in the next level of the recursion.

The number of potential feasible ranges is equal to the number of cells in M ,

which is O(m2). But, since we are looking for the smallest feasible range, we do not

need to generate all of them. We only use M to illustrate the search algorithm, its

cells correspond to the potential feasible ranges, but do not contain any values. We

thus represent M and its submatrices by the indices of the sorted list of weights

that correspond to the rows and columns of M . For example, we represent M by

M([1,m]× [1,m]), M2 by M([m
2
+1,m]× [j,m]), and M3 by M([1, m

2
−1]× [1, j−1]).

We define the size of a submatrix of M by the sum of its number of rows and number

of columns, for example, M is of size 2m, |M2| = 3m
2
− j + 1, and |M3| = m

2
+ j − 2.

Each recursive call is associated with a range of rows [l, l′] and a range of

columns [u′, u] (the submatrix M([l, l′]× [u′, u])), and a corresponding input graph

G′ = G([l, l′]× [u′, u]). The scheme does not state which edges should be in G′ or

how to construct it, but it does require the followings properties:

1. The number of edges in G′ should be O(|M ′|).
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2. Given G′, the feasibility decider can answer a feasibility query for any range in

M ′, in O(f(|G′|)) time.

3. The construction of the graphs for the next level should take O(|G′|) time.

The optimization scheme is given in Algorithm 3.1; its initial input is G =

G([1,m]× [1,m]).

Algorithm 3.1 Balance(G([l, l′]× [u′, u]))

1. Set i = l+l′

2

2. Perform a binary search on the ranges [i, j], u′ ≤ j ≤ u, to find the smallest feasible
range, using the feasibility decider with the graph G([l, l′]× [u′, u]) as input.

3. If there is no feasible range, then:

(a) If l = l′, return ∞.

(b) Else, construct G1 = G([l, i− 1]× [u′, u]) and return Balance(G1).

4. Else, let [wi, wj ] be the smallest feasible range found in the binary search.

(a) If l = l′, return (wj − wi).

(b) Else, construct two new graphs, G1 = G([i+1, l′]× [j, u]) and G2 = G([l, i− 1]×
[u′, j − 1]), and return min{(wj − wi),Balance(G1),Balance(G2)}.

Correctness. Let g be a bivariate real function with the property that for any four

values of the weight function c ≤ a ≤ b ≤ d, it holds that g(a, b) ≤ g(c, d). In our

case, g(a, b) = b− a. We prove a somewhat more general theorem – that our scheme

applies to any such monotone function g; for example, g(a, b) = b/a (assuming the

edge weights are positive numbers).

Theorem 3.8. Algorithm 3.1 returns the minimum value g(Smin, Smax) over all

feasible subsets S ∈ F .

Proof. We claim that given a graph G′ = G([l, l′]× [u′, u]) as input, Algorithm 3.1

returns the minimal g(Smin, Smax) over all feasible subsets S ∈ F , such that Smin ∈
[l, l′] and Smax ∈ [u′, u]. Let M ′ = M([l, l′] × [u′, u]) be the corresponding matrix.

The proof is by induction on the number of rows in M ′.

First, notice that the algorithm runs the feasibility decider only on ranges from

M ′. The base case is when M ′ contains a single row, i.e. l = l′. In this case the

algorithm returns the minimal feasible range [wl, wj] such that j ∈ [u′, u], or returns

∞ if there is no such range. Else, M ′ has more than one row. Assume that there

is no feasible range in the middle row of M ′. In other words, there is no j ∈ [u′, u]

such that [wi, wj] is a feasible range. Trivially, for any i′ > i we have wi′ > wi,

and therefore for any j ∈ [u′, u], [wi′ , wj] is not a feasible range, and the algorithm
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continues recursively with G1 = G([l, i − 1] × [u′, u]). Now assume that [wi, wj] is

the minimal feasible range in the middle row. We can partition the ranges in M ′ to

four types (submatrices):

1. All the ranges [wi′ , wj′ ] where i′ ∈ [i+ 1, l′] and j′ ∈ [j, u].

2. All the ranges [wi′ , wj′ ] where i′ ∈ [l, i− 1] and j′ ∈ [u′, j − 1].

3. All the ranges [wi′ , wj′ ] where i′ ∈ [i, l′] and j′ ∈ [u′, j − 1]. For any such

valid range (j′ > i′), we have [wi′ , wj′ ] ⊆ [wi, wj], so it is not a feasible range

(otherwise, the result of the binary search would be [wi, wj′ ]).

4. All the ranges [wi′ , wj′ ] where i′ ∈ [l, i] and j′ ∈ [j, u]. Since j ≥ i, all these

ranges are valid. For any such range, we have wi′ ≤ wi ≤ wj ≤ wj′ , therefore,

all these ranges are feasible, but since g(wi, wj) ≤ g(wi′ , wj′), there is no need

to check them.

Indeed, the algorithm continues recursively with G1 and G2 (corresponding to ranges

of type 1 and 2, respectively), which may contain smaller feasible ranges. By the

induction hypothesis, the recursive calls return the minimal g(Smin, Smax) over all

feasible subsets S ∈ F , such that Smin ∈ [i+1, l′] and Smax ∈ [j, u] or Smin ∈ [l, i−1]

and Smax ∈ [u′, j − 1]. Finally, the algorithm returns the minimum over all the

feasible ranges in M ′.

Lemma 3.9. The total size of the matrices in each level of the recursion tree is at

most 2m.

Proof. By induction on the level. The only matrix in level 0 is M , and |M | = 2m.

Let M ′ = M([l, l′]× [u′, u]) be a matrix in level i−1. The size of M ′ is l′−l+u−u′+2

(it has l′ − l + 1 rows and u− u′ + 1 columns). In level i we perform a binary search

in the middle row of M ′ to find the smallest feasible range [w l+l′
2
, wj] in this row. It

is easy to see that the resulting two submatrices are of sizes l′ − l+l′

2
+ u− j + 1 and

l+l′

2
− l + j − u′, respectively, which sums to l′ − l + u− u′ + 1.

Running time. Consider the recursion tree. It consists of O(logm) levels, where

the i’th level is associated with 2i disjoint submatrices of M . Level 0 is associated

with the matrix M0 = M , level 1 is associated with the submatrices M2 and M3 of

M (see Figure 3.3), etc.

In the i’th level we apply Algorithm 3.1 to each of the 2i submatrices associated

with this level. Let {M i
k}2

i

k=1 be the submatrices associated with the i’th level. Let

Gi
k be the graph corresponding to M i

k. The size of Gi
k is linear in the size of M i

k.

The feasibility decider runs in O(f(|M i
k|)) time, and thus the binary search in M i

k
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runs in O(f(|M i
k|) log |M i

k|) time. Constructing the graphs for the next level takes

O(|M i
k|) time. By Lemma 3.9, the total time spent on the i’th level is

O(
2i∑

k=1

(|M i
k|+ f(|M i

k|) log |M i
k|)) ≤ O(

2i∑
k=1

|M i
k|+

2i∑
k=1

f(|M i
k|) logm)

= O(m+ logm
2i∑

k=1

f(|M i
k|)).

Finally, the running time of the entire algorithm is

O(m logm+

logm∑
i=1

(m+ logm
2i∑

k=1

f(|M i
k|))) = O(m logm+ logm

logm∑
i=1

2i∑
k=1

f(|M i
k|)).

Notice that the number of potential ranges is O(m2), while the number of weights

is only O(m). Nevertheless, whenever f(|M ′|) is a linear function, our optimization

scheme runs in O(m log2m) time. More generally, whenever f(|M ′|) is a function

for which f(x1) + · · ·+ f(xk) = O(f(x1 + · · ·+ xk)), for any x1, . . . , xk, our scheme

runs in O(m logm+ f(2m) log2m) time.

3.6 MUPP and WDFD under translation in 1D

In Section 3.4 we described an algorithm for WDFD under translation in 1D, which

uses a dynamic data structure due to Thorup [Tho00]. In this section we present a

much simpler algorithm for the problem, which avoids heavy tools and has roughly

the same running time.

As shown in Section 3.4, WDFD under translation in 1D can be viewed as BOP.

More precisely, we say that a range [s, t] is a feasible range if (an, bm) is a w-reachable

position in Gw w.r.t. σ[s,t]. Now, our goal is to find a feasible range of minimum size.

Consider the following weighted graph G̃w = (Ṽw, Ẽw, ω), where Ṽw = (A×B) ∪
{ve | e ∈ Ew}, Ẽw = {(u, ve), (ve, v) | e = (u, v) ∈ Ew}, and ω(((ai, bj), ve)) = ai− bj .

In other words, G̃w is obtained from Gw by adding, for each edge e = (u, v) of Gw, a

new vertex ve, which splits the edge into two new edges, (u, ve), (ve, v), whose weight

is the value associated with their original vertex (i.e., either u or v).

Now (an, bm) is a w-reachable position in Gw w.r.t. σ[s,t], if and only if there

exists a path P between (a1, b1) and (an, bm) in Gw such that for each vertex v ∈ P ,

v ∈ [s, t], if and only if there exists a path P̃ between (a1, b1) and (an, bm) in G̃w

such that for each edge e ∈ P̃ , ω(e) ∈ [s, t]. Thus, we have reduced our problem to a

special case of the Most Uniform Path Problem (MUPP).

Note that the technique used in Section 3.4 can also be applied to MUPP: Search

in the sorted sequence of edge weights and use the reachability data structure of

Thorup [Tho00] to obtain an O(m log n(log log n)3)-time algorithm. Below we show



3.7. More applications 45

how to apply our BOP scheme to MUPP, with a linear-time feasibility decider, to

obtain a much simpler but slightly slower O(m log2 n)-time algorithm.

Here F is the set of paths in graph G between vertices s and t. The matrix for

the initial call is M and G is its associated graph. Consider a recursive call, and let

M ′ be the submatrix and G′ the graph associated with it. Throughout the execution

of the algorithm, we maintain the following properties:

1. The number of edges and vertices in G′ is at most O(|M ′|), and

2. Given a range [wp, wq] in M ′, there exists a path between s and t in G′ with

edges in the range [wp, wq] if and only if such a path exists in G.

Construction of the graphs for the next level. Given the input graph G′ and

a submatrix M ′′ = M([p, p′]× [q′, q]) of M ′, we construct the corresponding graph

G′′ as follows: First, we remove from G′ all the edges e such that w(e) /∈ [wp, wq].

Then, we contract edges with weights in the range (wp′ , wq′), and finally we remove

all the isolated vertices. Notice that G′′ is a graph minor of G′, and, clearly, all the

properties hold.

The feasibility decider. Let [wp, wq] be a range from M ′. Run a BFS in G′,

beginning from s, while ignoring edges with weights outside the range [wp, wq]. If

the BFS finds t, return “yes”, otherwise return “no”. The algorithm returns “yes”

if and only if there exists a path between s and t in G′ with edges in the range

[wp, wq], i.e., if and only if such a path exists in G. The running time of the decider

is O(|G′|) = O(|M ′|).

3.7 More applications

We have introduced an alternative optimization scheme for BOP and demonstrated

its power. It would be interesting to find additional applications of this scheme. For

example, consider the following problems:

Most uniform spanning tree. Given a graph G, find a spanning tree T ∗ of G,

which minimizes (max{w(e) : e ∈ T} −min{w(e) : e ∈ T}) over all spanning trees T

of G.

In 1986, Camerini et al. [CMMT86] presented an O(mn)-time algorithm for

the problem. Later, by using an involved dynamic data structure, Galil and

Schieber [GS88] showed how to reduce the running time to O(m log n).

Using our optimization scheme, in a quite straightforward manner, we obtain an

O(m log2 n) time algorithm. Although slower by a factor of log n, our algorithm does

not require any special data structures, and its description is easy and much shorter

using the general optimization scheme.
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In this case, F is the set of all spanning trees of G. The construction of the

graphs for the recursive calls is similar to the construction in MUPP. The feasibility

decider just has to check that G′ has a connected spanning subgraph with edges in

the given range. This can be done using a BFS or DFS algorithm, ignoring edges

outside the range, in O(|G′|) = O(|M ′|) time.

A generalization of MUPP. Given a constant number of pairs of vertices {(si, ti)}ki=1,

find a minimum range [l, u] such that for each 1 ≤ i ≤ k, G contains a path between

si and ti with all edge weights in the range [l, u]. The algorithm above can be easily

adapted for solving the above problem in O(m log2 n) time.



Chapter 4

The Discrete Fréchet Gap

4.1 Introduction

We suggest a new variant of the discrete Fréchet distance — the discrete Fréchet gap

(DFG for short). Returning to the frogs analogy, in the discrete Fréchet gap the leash

is elastic and its length is determined by the distance between the frogs. When the

frogs are at the same location, the length of the leash is zero. The rules governing

the jumps are the same, i.e., traverse all the points in order, no backtracking. We

are interested in the minimum gap of the leash, i.e., the minimum difference between

the longest and shortest positions of the leash needed for the frogs to traverse their

corresponding sequences.

We use the graph definition from Chapter 3 to formally define the discrete Fréchet

gap, as follows. Given two sequences of points A = (a1, . . . , an) and B = (b1, . . . , bm),

the discrete Fréchet gap between them, ddFg(A,B), is the size of a smallest

range [s, t], 0 ≤ s ≤ t, for which (an, bm) is a reachable position w.r.t. the following

indicator function:

σ̂[s,t](ai, bj) =

1, s ≤ d(ai, bj) ≤ t

0, otherwise
.

(b)(a) (c)

Figure 4.1: (a) Two non-similar curves, with large gap and large distance. (b) Two similar
curves. The gap is zero while the distance remains the same as in (b). (c) Two non-similar
curves with small gap and large distance.

47
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While the discrete Fréchet distance is determined by the (matched) pairs of points

that are very far from each other and is indifferent towards (matched) pairs of points

that are very close to each other, the discrete Fréchet gap measure is sensitive to

both. In some cases (though not always), this sensitivity results in better reflection

of reality; see Figure 4.1 for examples.

(a) (b)

Figure 4.2: (a) The 1-sided Fréchet gap with shortcuts is small and the outlier is ignored.
(b) The 1-sided Fréchet distance with shortcuts is large and the outlier is matched.

For handling outliers, we suggest the one-sided discrete Fréchet gap with

shortcuts variant. Comparing to the one-sided discrete Fréchet distance with

shortcuts, we believe that the gap variant better reflects the intuitive notion of

resemblance between curves in the presence of outliers. Roughly, the gap measure is

more suitable for detecting outliers, and by enabling shortcuts one can neutralize

them. Figure 4.2 depicts two curves that look similar, except for a single outlier,

with small Fréchet gap with shortcuts and large Fréchet distance with shortcuts.

Also notice that the gap variant gives a more “natural” matching of the points,

which better captures the similarity between the curves. In general, since the Fréchet

distance is determined by the maximum distance between (matched) points, there

can be many different Fréchet matchings, not all of them are useful. It has been

noted before, and some solutions have been suggested, for example see [BBMS12]

and [BBvL+13].

Other variants of the discrete Fréchet distance have corresponding meaningful

gap variants. For example, the weak discrete Fréchet distance in which the frogs are

allowed to jump also backwards to the previous point in their sequence.

Recently, Fan and Raichel [FR17] considered the continuous Fréchet gap. They

gave an O(n5 log n) time exact algorithm and a more efficient O(n2 log n+ n2

ε
log 1

ε
)-

time (1 + ε)-approximation algorithm for computing it, where n is the total number

of vertices of the input curves.

4.2 DFG and DFD under translation

The following theorem reveals a connection between the discrete Fréchet gap and

the discrete Fréchet distance under translation.
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Theorem 4.1. For any two sequences A and B of points in Rd, d̂dF (A,B) ≥
ddFg(A,B)/2.

Proof. Let ddFg(A,B) be determined by the range [s, t], and denote δ = d̂dF (A,B).

Assume by contradiction that δ < (t − s)/2. Then, by Lemma 3.6, there exists a

point o such that (an, bm) is a reachable position w.r.t. σS(o,δ). In other words, there

exists a path P in G from (a1, b1) to (an, bm), such that for each vertex (ai, bj) in

P it holds that d(ai − bj, o) ≤ δ < (t − s)/2, i.e., ∥(ai − bj)− o∥ ≤ δ < (t − s)/2.

Thus, by the triangle inequality, ∥o∥− (t− s)/2 < ∥ai − bj∥ < ∥o∥+(t− s)/2, which

means that there exists a range [s′, t′] ⊂ [s, t] such that for each vertex (ai, bj) in P

it holds that s′ ≤ d(ai, bj) ≤ t′. In other words, (an, bm) is a reachable position w.r.t.

σ̂[s′,t′], which contradicts the assumption that ddFg(A,B) = t− s.

Most variants of the (original) Fréchet distance (shortcuts, weak, partial, etc.)

have a natural gap counterpart: instead of recording the maximum length of the

leash in a walk, we record the difference between the maximum length and the

minimum length.

We denote by dsdFg(A,B) and dwdFg(A,B) the discrete Fréchet gap with shortcuts

(DFGS) and weak discrete Fréchet gap (WDFG) variants, respectively, between two

sequences of points A and B.

It is interesting that DFD, DFDS, and WDFD, all in 1D under translation, are in

some sense analogous to their respective gap variants (DFG, DFGS, and WDFG, in d

dimensions and no translation). We can use algorithms similar to those presented in

Chapter 3 in order to compute them, but with the indicator function σ̂[s,t]. Observe

that since we are interested in the minimum feasible range, we may restrict our

attention to ranges whose limits are distances between points of A and points of

B. (Otherwise, we can increase the lower limit and decrease the upper limit until

they become such ranges.) Thus, we can search for the minimum feasible range with

boundaries in the set D̂ = {d(ai, bj)|ai ∈ A, bj ∈ B}. As in Section 3.4, we can use

the search algorithm on D̂ (instead of on D), together with a suitable data structure

using the indicator function ˆsigma[s,t], in order to solve DFG and its variants. The

running times are thus similar to those in Section 3.4.

Theorem 4.2. Let A and B be two sequences of n and m points (m ≤ n), respectively.

Then, ddFg(A,B) can be computed in O(m2n(1 + log(n/m))) time, dsdFg(A,B) in

O(mn log(m+ n)), and dwdFg(A,B) in O(mn log(m+ n)(log log(m+ n))3) time.

Remark 4.3. Our algorithms can also be used for computing the discrete Fréchet

ratio (and its variants), in which we are interested in the minimum ratio between the

longest and the shortest positions of the leash. More generally, one can replace the

gap function with any other function g defined for pairs of distances, provided that it

is monotone, i.e., for any four distances c ≤ a ≤ b ≤ d, it holds that g(a, b) ≤ g(c, d).
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Chapter 5

Approximate Near-Neighbor for

Curves

5.1 Introduction

Nearest neighbor search is a fundamental and well-studied problem that has various

applications in machine learning, data analysis, and classification. Such analysis

of curves has many practical applications, where the position of an object as it

changes over time is recorded as a sequence of readings from a sensor to generate

a trajectory. For example, the location readings from GPS devices attached to

migrating animals [ABB+14], the traces of players during a football match captured

by a computer vision system [GH17], or stock market prices [NW13]. In each case,

the output is an ordered sequence C of m vertices (i.e., the sensor readings), and by

interpolating the location between each pair of vertices as a segment, a polygonal

chain is obtained.

Let C be a set of n curves, each consisting of m points in d dimensions, and let δ

be some distance measure for curves. In the nearest-neighbor problem for curves, the

goal is to construct a data structure for C that supports nearest-neighbor queries,

that is, given a query curve Q of length m, return the curve C∗ ∈ C closest to Q

(according to δ). The approximation version of this problem is the (1+ε)-approximate

nearest-neighbor problem, where the answer to a query Q is a curve C ∈ C with

δ(Q,C) ≤ (1 + ε)δ(Q,C∗). We study a decision version of this approximation

problem, which is called the (1 + ε, r)-approximate near-neighbor problem for curves.

Here, if there exists a curve in C that lies within distance r of the query curve Q,

one has to return a curve in C that lies within distance (1 + ε)r of Q.

Note that there exists a reduction from the (1 + ε)-approximate nearest-neighbor

problem to the (1+ε, r)-approximate near-neighbor problem [Ind00, SDI06, HPIM12],

at the cost of an additional logarithmic factor in the query time and an O(log2 n)

factor in the storage space.

It was shown in [IM04, DKS16] that unless the strong exponential time hypothesis
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fails, nearest neighbor under DFD is hard to approximate within a factor of c < 3, with

a data structure requiring O(n2−ε polylogm) preprocessing and O(n1−ε polylogm)

query time, for ε > 0.

Indyk [Ind02] gave a deterministic near-neighbor data structure for curves un-

der DFD. The data structure achieves an approximation factor of O((logm +

log log n)t−1) given some trade-off parameter t > 1. Its space consumption is very

high, O(m2|X|)tm1/t · n2t, where |X| is the size of the domain on which the curves

are defined, and the query time is (m log n)O(t). In Table 5.1 we set t = 1 + o(1) to

obtain a constant approximation factor.

Later, Driemel and Silvestri [DS17] presented a locality-sensitive-hashing scheme

for curves under DFD, improving the result of Indyk for short curves. Their data

structure uses O(24mdmn log n+mn) space and answers queries in O(24mdm log n)

time with an approximation factor of O(d3/2). They also provide a trade-off between

approximation quality and computational performance: for a parameter k ∈ [m], a

data structure that uses O(22kmk−1n log n+mn) space is constructed that answers

queries in O(22kmk log n) time with an approximation factor of O(d3/2m/k). They

also show that this result can be applied to DTW, but only for one extreme of the

trade-off which gives O(m) approximation.

Recently, Emiris and Psarros [EP18] presented near-neighbor data structures for

curves under both DFD and DTW distance. Their algorithm provides approximation

factor of (1 + ε), at the expense of increasing space usage and preprocessing time.

The idea is that for a fixed alignment between two curves (i.e. a given sequence

of hops of the two frogs), the problem can be reduced to near-neighbor problem

on points in ℓ∞ (in a higher dimension). Their basic idea is to construct a data

structure for all possible alignments. Once a query is given, they query all these

data structures and return the closest curve found. This approach is responsible for

the 2m factor in their query time. Furthermore, they generalize this approach using

randomized projections of lp-products of Euclidean metrics (for any p ≥ 1), and

define the ℓp,2-distance for curves (for p ≥ 1), which is exactly DFD when p = ∞,

and DTW distance when p = 1 (see Section 5.2). The space used by their data

structure is Õ(n) · (2 + d
logm

)O(m1/ε·d log(1/ε)) for DFD and Õ(n) · O(1
ε
)md for DTW,

while the query time in both cases is O(d · 22m log n).

De Berg, Gudmundsson, and Mehrabi [dBGM17] described a dynamic data

structure for approximate nearest neighbor for curves (which can also be used for

other types of queries such as range reporting), under the (continuous) Fréchet

distance. Their data structure uses n ·O
(
1
ε

)2m
space and has O(m) query time, but

with an additive error of ε · reach(Q), where reach(Q) is the maximum distance

between the start vertex of the query curve Q and any other vertex of Q. Furthermore,

their query procedure might fail when the distance to the nearest neighbor is relatively

large.
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Afshani and Driemel [AD18] studied (exact) range searching under both the

discrete and continuous Fréchet distance. In this problem, the goal is to preprocess C
such that given a query curve Q of length mq and a radius r, all the curves in C that

are within distance r from Q can be found efficiently. For DFD, their data structure

uses O(n(log log n)m−1) space and has O(n1− 1
d · logO(m) n ·mO(d)

q ) query time, where

mq is limited to logO(1) n. Additionally, they provide a lower bound in the pointer

model, stating that every data structure with Q(n) +O(k) query time, where k is

the output size, has to use roughly Ω ((n/Q(n))2) space in the worst case. Afshani

and Driemel conclude their paper by asking whether more efficient data structures

might be constructed if one allows approximation.

De Berg, Cook IV and Gudmundsson [dBIG13] considered the following approxi-

mation version of range counting for curves under the (continuous) Fréchet distance.

Given a collection of polygonal curves C with a total number of n vertices in the

plane, preprocess C into a data structure such that given a threshold value r and

query segment Q of length at least 6r, returns the number of all the inclusion-minimal

subcurves of the curves in C whose Fréchet distance to Q is at most r, plus possibly

additional subcurves whose Fréchet distance to Q is up to (2+3
√
2)r. Each subcurve

of a curve C ∈ C is a connected subset of C, and the endpoints of a subcurve can lie

in the interior of one of C’s segments. For any parameter n ≤ s ≤ n2, the space used

by the data structure is in O(s polylog n), the preprocessing time is O(n3 log n), and

the queries are answered in O( n√
s
polylog n) time.

Our results. We present a data structure for the (1 + ε, r)-approximate near-

neighbor problem using a bucketing method. We construct a relatively small set of

curves I such that given a query curve Q, if there exists some curve in C within

distance r of Q, then one of the curves in I must be very close to Q. The points of

the curves in I are chosen from a simple discretization of space, thus, while it is not

surprising that we get the best query time, it is surprising that we achieve a better

space bound. See Table 5.1 for a summary of our results. In the table, we do not

state our result for the general ℓp,2-distance. Instead, we state our results for the

two most important cases, i.e. DFD and DTW, and compare them with previous

work. Note that our results substantially improve the current state of the art for

any p ≥ 1. In particular, we remove the exponential dependence on m in the query

bounds and significantly improve the space bounds.

We also apply our methods to an approximation version of range counting for

curves (for the general ℓp,2 distance) and achieve bounds similar to those of our

ANNC data structure. Moreover, at the cost of an additional O(n)-factor in the space

bound, we can also answer approximate range searching queries, thus answering the

question of Afshani and Driemel [AD18] (see above), with respect to the discrete

Fréchet distance.
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Finally, note that our approach with obvious modifications works also in a dynamic

setting, that is, we can construct a dynamic data structure for ANNC as well as for

other related problems such as range counting and range reporting for curves.

Space Query Approx. Comments

DFD

O(m2|X|)m1−o(1) · n2−o(1) (m log n)O(1) O(1) deterministic,
[Ind02]

O(24mdn log n+ nm) O(24mdm log n) O(d3/2) randomized,
using LSH
[DS17]

Õ(n) · (2 + d
logm)O(m1/ε·d log(1/ε)) O(d · 22m log n) 1 + ε randomized,

[EP18]

n ·O(1ε )
md O(md log(mnd

ε )) 1 + ε deterministic,
Theorem 5.8

DTW

O(24mdn log n+ nm) O(24mdm log n) O(m) randomized,
using LSH
[DS17]

Õ(n) ·O(1ε )
md O(d · 22m log n) 1 + ε randomized,

[EP18]

n ·O(1ε )
md O(md log(mnd

ε )) 1 + ε deterministic,
Theorem 5.12

Table 5.1: Our approximate near-neighbor data structure under DFD and DTW compared
to the previous results.

Organization. We begin by presenting our data structure for the special case where

the distance measure is DFD (Section 5.3), since this case is more intuitive. Then,

we apply the same approach to the case where the distance measure is ℓp,2-distance,

for any p ≥ 1 (Section 5.4). Surprisingly, we achieve the exact same time and space

bounds, without any dependence on p. Finally, we show that a similar data structure

can be used in order to solve a version of approximate range counting for curves

(Section 5.5).

5.2 Preliminaries

A formal definition of the discrete Fréchet distance was given in Section 1.1, and

a different equivalent one was used in Sections 2.2 and 3.2. In this chapter, the

definition of DFD is rather different from graph definition, and uses the notion of

alignment between curves.

First note that in order to simplify the presentation, we assume throughout the

chapter that all the input and query curves have exactly the same size, but this
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assumption can be easily removed.

Let C be a set of n curves, each consists of m points in d dimensions, and let δ

be some distance measure for curves.

Problem 5.1 ((1 + ε)-approximate nearest-neighbor for curves). Given a parameter

0 < ε ≤ 1, preprocess C into a data structure that given a query curve Q, returns

a curve C ′ ∈ C, such that δ(Q,C ′) ≤ (1 + ε) · δ(Q,C), where C is the curve in C
closest to Q.

Problem 5.2 ((1 + ε, r)-approximate near-neighbor for curves). Given a parameter

r and 0 < ε ≤ 1, preprocess C into a data structure that given a query curve Q, if

there exists a curve Ci ∈ C such that δ(Q,Ci) ≤ r, returns a curve Cj ∈ C such that

δ(Q,Cj) ≤ (1 + ε)r.

Curve alignment. Given an integer m, let τ := ⟨(i1, j1), . . . , (it, jt)⟩ be a sequence

of pairs where i1 = j1 = 1, it = jt = m, and for each 1 < k ≤ t, one of the following

properties holds:

(i) ik = ik−1 + 1 and jk = jk−1,

(ii) ik = ik−1 and jk = jk−1 + 1, or

(iii) ik = ik−1 + 1 and jk = jk−1 + 1.

We call such a sequence τ an alignment of two curves.

Let P = (p1, . . . , pm) and Q = (q1, . . . , qm) be two curves of length m in d dimensions.

Discrete Fréchet distance (DFD). The Fréchet cost of an alignment τ w.r.t.

P and Q is σdF (τ) := max(i,j)∈τ ∥pi − qj∥2. The discrete Fréchet distance is defined

over the set T of all alignments as

ddF (P,Q) = min
τ∈T

σdF (τ).

Dynamic time wrapping (DTW). The time warping cost of an alignment τ

w.r.t. P and Q is σDTW (τ) :=
∑

(i,j)∈τ ∥pi− qj∥2. The DTW distance is defined over

the set T of all alignments as

dDTW (P,Q) = min
τ∈T

σDTW (τ).

ℓp,2-distance for curves. The ℓp,2-cost of an alignment τ w.r.t. P and Q is

σp,2(τ) :=
(∑

(i,j)∈τ ∥pi − qj∥p2
)1/p

. The ℓp,2-distance between P and Q is defined

over the set T of all alignments as

dp,2(P,Q) = min
τ∈T

σp,2(τ).
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Notice that ℓp,2-distance is a generalization of DFD and DTW, in the sense that

σdF = σ∞ and ddF = d∞, σDTW = σ1 and dDTW = d1. Also note that DFD satisfies

the triangle inequality, but DTW and ℓp,2-distance (for p ̸=∞) do not.

Emiris and Psarros [EP18] showed that the total number of all possible alignments

between two curves is inO(m·22m). We reduce this bound by counting only alignments

that can determine the ℓp,2-distance between two curves. More formally, let τ be a

curve alignment. If there exists a curve alignment τ ′ such that τ ′ ⊂ τ , then clearly

σp(τ
′) ≤ σp(τ), for any 1 ≤ p ≤ ∞ and w.r.t. any two curves. In this case, we say

that τ cannot determine the ℓp,2-distance between two curves.

Lemma 5.3. The number of different alignments that can determine the ℓp,2-distance

between two curves (for any 1 ≤ p ≤ ∞) is at most O(2
2m

√
m
).

Proof. Let τ = ⟨(i1, j1), . . . , (it, jt)⟩ be a curve alignment. Notice thatm ≤ t ≤ 2m−1.
By definition, τ has 3 types of (consecutive) subsequences of length two:

(i) ⟨(ik, jk), (ik + 1, jk)⟩,

(ii) ⟨(ik, jk), (ik, jk + 1)⟩, and

(iii) ⟨(ik, jk), (ik + 1, jk + 1)⟩.

Denote by T1 the set of all alignments that do not contain any subsequence of

type (iii). Then, any τ1 ∈ T1 is of length exactly 2m − 1. Moreover, τ1 contains

exactly 2m− 2 subsequences of length two, of which m− 1 are of type (i) and m− 1

are of type (ii). Therefore, |T1| =
(
2m−2
m−1

)
= O(2

2m
√
m
).

Assume that a curve alignment τ contains a subsequence of the form (ik, jk −
1), (ik, jk), (ik + 1, jk), for some 1 < k ≤ t − 1. Notice that removing the pair

(ik, jk) from τ results in a legal curve alignment τ ′, such that σp(τ
′) ≤ σp(τ), for

any 1 ≤ p ≤ ∞. We call the pair (ik, jk) a redundant pair. Similarly, if τ contains a

subsequence of the form (ik − 1, jk), (ik, jk), (ik, jk + 1), for some 1 < k ≤ t− 1, then

the pair (ik, jk) is also a redundant pair. Therefore we only care about alignments

that do not contain any redundant pairs. Denote by T2 the set of all alignments

that do not contain any redundant pairs, then any τ2 ∈ T2 contains at least one

subsequence of type (iii).

We claim that for any alignment τ2 ∈ T2, there exists a unique alignment τ1 ∈ T1.
Indeed, if we add the redundant pair (il, jl + 1) between (il, jl) and (il + 1, jl + 1) for

each subsequence of type (iii) in τ2, we obtain an alignment τ1 ∈ T1. Moreover, since

τ2 does not contain any redundant pairs, the reverse operation on τ1 results in τ2.

Thus we obtain |T2| ≤ |T1| = O(2
2m

√
m
).

Points and balls. Given a point x ∈ Rd and a real number R > 0, we denote

by Bd
p(x,R) the d-dimensional ball under the ℓp norm with center x and radius R,
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i.e., a point y ∈ Rd is in Bd
p(x,R) if and only if ∥x − y∥p ≤ R, where ∥x − y∥p =(∑d

i=1 |xi − yi|p
)1/p

. Let Bd
p(R) = Bd

p(0, R), and let V d
p (R) be the volume (w.r.t.

Lebesgue measure) of Bd
p(R), then

V d
p (R) =

2dΓ(1 + 1/p)d

Γ(1 + d/p)
Rd,

where Γ(·) is Euler’s Gamma function (an extension of the factorial function). For

p = 2 and p = 1, we get

V d
2 (R) =

πd/2

Γ(1 + d/2)
Rd and V d

1 (R) =
2d

d!
Rd.

Our approach consists of a discretization of the space using lattice points, i.e.,

points from Zd.

Lemma 5.4. The number of lattice points in the d-dimensional ball of radius R

under the ℓp norm (i.e., in Bd
p(R)) is bounded by V d

p (R + d1/p).

Proof. With each lattice point z = (z1, z2, . . . , zd), zi ∈ Z, we match the d-dimensional

lattice cube C(z) = [z1, z1 + 1]× [z2, z2 + 1]× · · · × [zd, zd + 1]. Notice that z ∈ C(z),

and the ℓp-diameter of a lattice cube is d1/p. Therefore, the number of lattice points

in the ℓdp-ball of radius R is bounded by the number of lattice cubes that are contained

in a ℓdp-ball with radius R + d1/p. This number is bounded by V d
p (R + d1/p) divided

by the volume of a lattice cube, which is 1d = 1.

Remark 5.5. In general, when the dimension d is large, i.e. d≫ log n, one can use

dimension reduction (using the celebrated Johnson-Lindenstrauss lemma [JL84])

in order to achieve a better running time, at the cost of inserting randomness to

the prepossessing and query. However, such an approach can work only against

oblivious adversary, as it will necessarily fail for some curves. Recently Narayanan

and Nelson [NN18] (improving [EFN17, MMMR18]) proved a terminal version of

the JL-lemma. Given a set K of k points in Rd and ε ∈ (0, 1), there is a dimension

reduction function f : Rd → RO( log k

ε2
) such that for every x ∈ K and y ∈ Rd it holds

that ∥x− y∥2 ≤ ∥f(x)− f(y)∥2 ≤ (1 + ε) · ∥x− y∥2.
This version of dimension reduction can be used such that the query remains

deterministic and always succeeds. The idea is to take all the nm points from all

the input curves to be the terminals, and let f be the terminal dimension reduction.

We transform each input curve P = (p1, . . . , pm) into f(P ) = (f(p1), . . . , f(pm)),

a curve in RO( lognm

ε2
). Given a query Q = (q1, . . . , qm) we transform it to f(Q) =

(f(q1), . . . , f(qm)). Since the pairwise distances between every query point to all

input points are preserved, so is the distance between the curves. Specifically, the

ℓp,2-cost of any alignment τ is preserved up to a 1 + ε factor, and therefore we can

reliably use the answer received using the transformed curves.
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5.3 ANNC under the discrete Fréchet distance

Consider the infinite d-dimensional grid with edge length εr√
d
.Given a point x in Rd,

by rounding one can find in O(d) time the grid point closest to x. Let G(x,R) denote

the set of grid points that are contained in Bd
2(x,R).

Corollary 5.6. |G(x, (1 + ε)r)| = O(1
ε
)d.

Proof. We scale our grid so that the edge length is 1, hence we are looking for the

number of lattice points in Bd
2(x,

1+ε
ε

√
d). By Lemma 5.4 we get that this number

is bounded by the volume of the d-dimensional ball of radius 1+ε
ε

√
d +
√
d ≤ 3

√
d

ε
.

Using Stirling’s formula we conclude,

V d
2

(
3
√
d

ε

)
=

π
d
2

Γ(d
2
+ 1)

·

(
3
√
d

ε

)d

=
(α
ε

)d
where α is a constant (approximately 12.4).

Denote by pij the j’th point of Ci, and let Gi =
⋃

1≤j≤m G(pij, (1 + ε)r) and G =⋃
1≤i≤n Gi, then by the above corollary we have |Gi| = m ·O(1

ε
)d and |G| = mn ·O(1

ε
)d.

Let Ii be the set of all curves Q = (x1, x2, . . . , xm) with points from Gi, such that

ddF (Ci, Q) ≤ (1 + ε
2
)r.

Claim 5.7. |Ii| = O(1
ε
)md and it can be computed in O(1

ε
)md time.

Proof. Let Q ∈ Ii and let τ be an alignment with σdF (τ) ≤ (1 + ε
2
)r w.r.t. Ci and

Q. For each 1 ≤ k ≤ m let jk be the smallest index such that (jk, k) ∈ τ . In other

words, jk is the smallest index that is matched to k by the alignment τ . Since

ddF (Ci, Q) ≤ (1 + ε
2
)r, we have xk ∈ Bd

2(p
i
jk
, (1 + ε

2
)r), for k = 1, . . . ,m. This means

that for any curve Q ∈ Ii such that σdF (τ) ≤ (1 + ε
2
)r w.r.t. Ci and Q, we have

xk ∈ G(pijk , (1 +
ε
2
)r), for k = 1, . . . ,m. By Corollary 5.6, the number of ways to

choose a grid point xk from G(pijk , (1 +
ε
2
)r) is bounded by O(1

ε
)d.

We conclude that given an alignment τ , the number of curvesQ withm points from

Gi such that σdF (τ) ≤ (1 + ε
2
)r w.r.t. Ci and Q is bounded by O(1

ε
)md. Finally, by

Lemma 5.3, the total number of curves in Ii is bounded by 22m·O(1
ε
)md = O(1

ε
)md.

The data structure. Denote I =
⋃

1≤i≤n Ii, so |I| = n ·O(1
ε
)md. We construct a

prefix tree T for the curves in I, as follows. For each 1 ≤ i ≤ n and curve Q ∈ Ii, if
Q /∈ T , insert Q to T , and set C(Q)← Ci.

Each node v ∈ T corresponds to a grid point from G. Denote the set of v’s

children by N(v). We store with v a multilevel search tree on N(v), with a level for

each coordinate. The points in G are the grid points contained in nm balls of radius

(1 + ε)r. Thus when projecting these points to a single dimension, the number of

1-dimensional points is at most nm ·
√
d(1+ε)r
εr

= O(nm
√
d

ε
). So in each level of the
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search tree on N(v) we have O(nm
√
d

ε
) 1-dimensional points, so the query time is

O(d log(nmd
ε
)).

Inserting a curve of length m to the tree T takes O(md log(nmd
ε
)) time. Since

T is a compact representation of |I| = n ·O(1
ε
)dm curves of length m, the number

of nodes in T is m · |I| = nm · O(1
ε
)dm. Each node v ∈ T contains a search

tree for its children of size O(d · |N(v)|), and
∑

v∈T |N(v)| = nm · O(1
ε
)dm so the

total space complexity is O(nmd) · O(1
ε
)md = n · O(1

ε
)md. Constructing T takes

O(|I| ·md log(nmd/ε)) = n log(n
ε
) ·O(1

ε
)md time.

The query algorithm. Let Q = (q1, . . . , qm) be the query curve. The query

algorithm is as follows: For each 1 ≤ k ≤ n find the grid point q′k (not necessarily

from G) closest to qk. This can be done in O(md) time by rounding. Then, search

for the curve Q′ = (q′1, . . . , q
′
m) in the prefix tree T . If Q′ is in T , return C(Q′),

otherwise, return NO. The total query time is then O(md log(nmd
ε
)).

Correctness. Consider a query curve Q = (q1, . . . , qm). Assume that there exists a

curve Ci ∈ C such that ddF (Ci, Q) ≤ r. We show that the query algorithm returns a

curve C∗ with ddF (C
∗, Q) ≤ (1 + ε)r.

Consider a point qk ∈ Q. Denote by q′k ∈ G the grid point closest to qk, and let

Q′ = (q′1, . . . , q
′
m).

We have ∥qk − q′k∥2 ≤
εr
2
, so ddF (Q,Q′) ≤ εr

2
. By the triangle inequality,

ddF (Ci, Q
′) ≤ ddF (Ci, Q) + ddF (Q,Q′) ≤ r +

εr

2
= (1 +

ε

2
)r,

so Q′ is in Ii ⊆ I. This means that T contains Q′ with a curve C(Q′) ∈ C such that

ddF (C(Q′), Q′) ≤ (1 + ε
2
)r, and the query algorithm returns C(Q′). Now, again by

the triangle inequality,

ddF (C(Q′), Q) ≤ ddF (C(Q′), Q′) + ddF (Q
′, Q) ≤ (1 +

ε

2
)r +

εr

2
= (1 + ε)r.

We obtain the following theorem.

Theorem 5.8. There exists a data structure for the (1 + ε, r)-ANNC under DFD,

with n · O(1
ε
)dm space, n · log(n

ε
) · O(1

ε
)md preprocessing time, and O(md log(nmd

ε
))

query time.
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m Reference Space Query Approx.

log n

[DS17] O(n4d+1 log n) O(n4d log2 n) d
√
d

[EP18] Ω(nO(d logn)) O(dn2 log n) 1 + ε

Theorem 5.8 nO(d) O(d log2 n) 1 + ε

O(1)

[DS17] 2O(d)n log n 2O(d) · log n d
√
d

[EP18] dO(d) · Õ(n) O(d log n) 1 + ε

Theorem 5.8 2O(d)n O(d log(nd)) 1 + ε

Table 5.2: Comparing our near-neighbor data structure to previous results, for a fixed ε
(say ε = 1/2).

5.4 ℓp,2-distance of polygonal curves

For the near-neighbor problem under the ℓp,2-distance, we use the same basic approach

as in the previous section, but with two small modifications. The first is that we set

the grid’s edge length to εr
m1/p

√
d
, and redefine G(x,R), Gi, and G, as in the previous

section but with respect to the new edge length of our grid. The second modification

is that we redefine Ii to be the set of all curves Q = (x1, x2, . . . , xm) with points

from G, such that dp(Ci, Q) ≤ 1 + ε
2
.

We assume without loss of generality from now and to the end of this section

that r = 1 (we can simply scale the entire space by 1/r), so the grid’s edge length is
ε

m1/p
√
d
. The following corollary is respective to Corollary 5.6.

Corollary 5.9. |Gp(x,R)| = O
(
1 + m1/p

ε
R
)d

.

Proof. We scale our grid so that the edge length is 1, hence we are looking for the

number of lattice points in Bd
2(x,

m1/p
√
d

ε
R). By Lemma 5.4 we get that this number

is bounded by the volume of the d-dimensional ball of radius (1 + m1/p

ε
R)
√
d. Using

Stirling’s formula we conclude,

V d
2

((
1 +

m1/p

ε
R

)√
d

)
=

π
d
2

Γ(d
2
+ 1)

·
((

1 +
m1/p

ε
R

)√
d

)d

= αd ·
(
1 +

m1/p

ε
R

)d

where α is a constant (approximately 4.13).

In the following claim we bound the size of Ii, which, surprisingly, is independent
of p.

Claim 5.10. |Ii| = O(1
ε
)md and it can be computed in O(1

ε
)md time.

Proof. Let Q = (x1, x2, . . . , xm) ∈ Ii, and let τ be an alignment with σp(τ) ≤ (1+ ε
2
)r

w.r.t. Ci and Q. For each 1 ≤ k ≤ m let jk be the smallest index such that (jk, k) ∈ τ .

In other words, jk is the smallest index that is matched to k by the alignment τ .
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Set Rk = ∥xk − pijk∥2. Since dp(Ci, Q) ≤ 1 + ε
2
, we have ∥(R1, . . . , Rm)∥p ≤ 1 + ε

2
.

Let αk be the smallest integer such that Rk ≤ αk
ε

m1/p , then αk ≤ m1/p

ε
Rk + 1, and by

triangle inequality,

∥(α1, α2, . . . , αm)∥p ≤
m1/p

ε
∥(R1, R2, . . . , Rm)∥p +m1/p

≤ m1/p

ε

(
1 +

ε

2

)
+m1/p <

(
2 +

1

ε

)
m1/p.

Clearly, xk ∈ Bd
2(p

i
jk
, αk

ε
m1/p ).

We conclude that for each curve Q = (x1, x2, . . . , xm) ∈ Ii there exists an align-

ment τ such that σp(τ) ≤ 1 + ε
2
w.r.t. Ci and Q, and a sequence of integers

(α1, . . . , αm) such that ∥(α1, α2, . . . , αm)∥p ≤ (2 + 1
ε
)m1/p and xk ∈ Bd

2(p
i
jk
, αk

ε
m1/p ),

for k = 1, . . . ,m. Therefore, the number of curves in Ii is bounded by the multipli-

cation of three numbers:

1. The number of alignments that can determine the distance, which is at most

22m by Lemma 5.3.

2. The number of ways to choose a sequence of m positive integers α1, . . . , αm such

that ∥(α1, α2, . . . , αm)∥p ≤ (2 + 1
ε
)m1/p, which is bounded by the number of

lattice points in Bd
p((2+

1
ε
)m1/p) (them-dimensional ℓp-ball of radius (2+

1
ε
)m1/p).

By Lemma 5.4, this number is bounded by

V m
p ((2+

1

ε
)m1/p+m1/p) ≤ V m

p (
4m1/p

ε
) =

2mΓ(1 + 1/p)m

Γ(1 +m/p)

(
4m1/p

ε

)m

= O(
1

ε
)m ,

where the last equality follows as mm/p

Γ(1+m/p)
= O(1)m.

3. The number of ways to choose a curve (x1, x2, . . . , xm), such that xk ∈
Gp(p

i
jk
, αk

ε
m1/p ), for k = 1, . . . ,m. By Corollary 5.9, the number of grid points in

Gp(p
i
jk
, αk

ε
m1/p ) is O(1 + αk)

d, so the number of ways to choose (x1, x2, . . . , xm)

is at most Πm
k=1O(1 + αk)

d = O(1)md (Πm
k=1(1 + αk))

d. By the inequality of

arithmetic and geometric means we have

(Πm
k=1(1 + αk)

p)1/p ≤
(∑m

k=1(1 + αk)
p

m

)m/p

=

(
∥(1 + α1, . . . , 1 + αm)∥p

m1/p

)m

≤
(
∥1∥p + ∥(α1, . . . , αm)∥p

m1/p

)m

≤

(
m1/p + (2 + 1

ε
)m1/p

m1/p

)m

= O(
1

ε
)m,

so Πm
k=1O(1 + αk)

d = O(1)mdO(1
ε
)md = O(1

ε
)md.



64 Approximate Near-Neighbor for Curves

The data structure and query algorithm are exactly the same as we described for

DFD, but the analysis of space complexity and query time are different.

Space complexity and query time. The size of Ii and I are the same as in

Section 5.3, so the total number of curves stored in the tree T is the same in our

case. We only need to show that the upper bound on the size and query time of the

search tree associated with a given node v of the tree T remains as in Section 5.3.

The grid points corresponding to the nodes in N(v) are from n sets of m balls

with radius (1 + ε). When projecting the grid points in one of the ball to a single

dimension, the number of 1-dimensional points is at most m1/p
√
d

ε
· (1 + ε), so the

total number of projected points is at most nm
1+ 1

p
√
d

ε
· (1 + ε).

Thus in each level of the search tree of v we have O(nm
2
√
d

ε
) 1-dimensional points,

so the query time is O(d log(nmd
ε
)), and inserting a curve of length m to the tree

T takes O(md log(nmd
ε
)) time. Note that the size of the search tree of v remains

O(d · |N(v)|)
We conclude that the total space complexity is O(nm

2
√
d

ε
) ·O(1

ε
)dm = n ·O(1

ε
)dm,

constructing T takes O(|I| ·md log(nmd/ε)) = n log(n
ε
) ·O(1

ε
)md time, and the total

query time is O(md log(nmd
ε
)).

Correctness. Consider a query curve Q = (q1, . . . , qm). Assume that there exists a

curve Ci ∈ C such that dp(Ci, Q) ≤ 1. We will show that the query algorithm returns

a curve C∗ with dp(C
∗, Q) ≤ 1 + ε.

Consider a point qk ∈ Q. Denote by q′k ∈ G the grid point closest to qk, and let

Q′ = (q′1, . . . , q
′
m).

We have ∥qk − q′k∥2 ≤ ε
2m1/p . Let τ be an alignment such that the ℓp,2-cost of τ

w.r.t. Ci and Q is at most 1. Unlike the Fréchet distance, ℓp,2-distance for curves

does not satisfy the triangle inequality. However, by the triangle inequality under ℓ2

and ℓp, we get that the ℓp,2-cost of τ w.r.t. Ci and Q′ is

σp(τ) =

 ∑
(j,t)∈τ

(∥pij − q′t∥2)p
1/p

≤

 ∑
(j,t)∈τ

(∥pij − qt∥2 + ∥qt − q′t∥2)p
1/p

≤

 ∑
(j,t)∈τ

(∥pij − qt∥2)p
1/p

+

 ∑
(j,t)∈τ

(∥qt − q′t∥2)p
1/p

≤ 1 +
(
m
( ε

2m1/p

)p)1/p
≤ 1 +

ε

2
.



5.5. Approximate range counting 65

So dp(Ci, Q
′) ≤ 1+ ε

2
, and thus Q′ is in Ii ⊆ I. This means that T contains Q′ with

a curve C(Q′) ∈ C such that dp(C(Q′), Q′) ≤ 1 + ε
2
, and the query algorithm returns

C(Q′). Now, again by the same argument (using an alignment with ℓp,2-cost at most

1+ ε
2
w.r.t. C(Q′) and Q′), we get that dp(C(Q′), Q) ≤ 1+ ε

2
+
(
m( ε

2m1/p )
p
)1/p

= 1+ε.

We obtain the following theorem.

Theorem 5.11. There exists a data structure for the (1 + ε, r)-ANNC under

ℓp,2-distance, with n · O(1
ε
)dm space, n log(n

ε
) · O(1

ε
)md preprocessing time, and

O(md log(nmd
ε
)) query time.

As mentioned in the preliminaries section, the DTW distance between two curves

equals to their ℓ1,2-distance, and therefore we obtain the following theorem.

Theorem 5.12. There exists a data structure for the (1 + ε, r)-ANNC under DTW,

with n · O(1
ε
)dm space, n log(n

ε
) · O(1

ε
)md preprocessing time, and O(md log(nmd

ε
))

query time.

5.5 Approximate range counting

In the range counting problem for curves, we are given a set C of n curves, each

consisting of m points in d dimensions, and a distance measure for curves δ. The goal

is to preprocess C into a data structure that given a query curve Q and a threshold

value r, returns the number of curves that are within distance r from Q.

In this section we consider the following approximation version of range counting

for curves, in which r is part of the input (see Remark 5.15). Note that by storing

pointers to curves instead of just counters, we can obtain a data structure for the

approximate range searching problem (at the cost of an additional O(n)-factor to

the storage space).

Problem 5.13 ((1+ε, r)-approximate range-counting for curves). Given a parameter

r and 0 < ε ≤ 1, preprocess C into a data structure that given a query curve Q,

returns the number of all the input curves whose distance to Q is at most r plus

possibly additional input curves whose distance to Q is greater than r but at most

(1 + ε)r.

We construct the prefix tree T for the curves in I as in Section 5.4, as follows.

For each 1 ≤ i ≤ n and curve Q ∈ Ii, if Q is not in T , insert it into T and initialize

C(Q) ← 1. Otherwise, if Q is in T , update C(Q) ← C(Q) + 1. Notice that C(Q)

holds the number of curves from C that are within distance (1 + ε
2
)r to Q. Given

a query curve Q, we compute Q′ as in Section 5.4. If Q′ is in T , we return C(Q′),

otherwise, we return 0.

Clearly, the storage space, preprocessing time, and query time are similar to those

in Section 5.4. We claim that the query algorithm returns the number of curves
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from C that are within distance r to Q plus possibly additional input curves whose

distance to Q is greater than r but at most (1 + ε)r. Indeed, let Ci be a curve such

that ddF (Ci, Q) ≤ r. As shown in Section 5.4 we get dp(Ci, Q
′) ≤ (1+ ε

2
)r, so Q′ is in

Ii and Ci is counted in C(Q′). Now let Ci be a curve such that dp(Ci, Q) > (1 + ε)r.

If dp(Ci, Q
′) ≤ (1 + ε

2
)r, then by a similar argument (switching the rolls of Q and

Q′) we get that dp(Ci, Q
′) ≤ (1 + ε)r, a contradiction. So dp(Ci, Q

′) > (1 + ε
2
)r, and

thus Ci is not counted in C(Q′).

We obtain the following theorem.

Theorem 5.14. There exists a data structure for the (1 + ε, r)-approximate range-

counting for curves under ℓp,2-distance, with n · O(1
ε
)dm space, n log(n

ε
) · O(1

ε
)md

preprocessing time, and O(md log(nmd
ε
)) query time.

Remark 5.15. When the threshold parameter r is part of the query, we call the

problem the (1 + ε)-approximate range-counting problem. Note that the reduction

from (1 + ε)-approximate nearest-neighbor to (1 + ε, r)-approximate near-neighbor

can be easily adapted to a reduction from (1 + ε)-approximate range-counting to

(1 + ε, r)-approximate range-counting.



Chapter 6

Nearest Neighbor and Clustering

for Curves and Segments

6.1 Introduction

We consider efficient algorithms for two fundamental problems for sets of polygonal

curves in the plane: nearest-neighbor query and clustering. Both of these problems

have been studied extensively and bounds on the running time and storage con-

sumption have been obtained. In general, these bounds suggest that the existence of

algorithms that can efficiently process large datasets of curves of high complexity is

unlikely. Therefore we study special cases of the problems where some curves are

assumed to be directed line segments (henceforth referred to as segments), and the

distance metric is the discrete Fréchet distance.

Given a collection C of n curves, a natural question to ask is whether it is possible

to preprocess C into a data structure so that the nearest curve in the collection to

a query curve Q can be determined efficiently. This is the (exact) nearest-neighbor

problem for curves (NNC).

In Chapter 5, we study the approximation version of the nearest-neighbor problem

for curves, and give a survey of the literature regarding this version of the problem.

A close-related problem is range searching (or counting) for curves. In this problem,

the goal is to preprocess C such that given a query curve Q of length mq and a radius

r, all the curves in C that are within distance r from Q can be found efficiently. As

mentioned in Chapter 5, Afshani and Driemel [AD18] studied (exact) range searching

under both the discrete and continuous Fréchet distance. For the discrete Fréchet

distance in the plane, their data structure uses space in O(n(log log n)m−1) and has

query time in O(
√
n · logO(m) n ·mO(1)

q ), assuming mq = logO(1) n. They also show

that any data structure in the pointer model that achieves Q(n) +O(k) query time,

where k is the output size, has to use roughly Ω(n/Q(n))2) space in the worst case,

even if mq = 1!

Clustering is another fundamental problem in data analysis that aims to partition

67
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an input collection of curves into clusters where the curves within each cluster are

similar in some sense, and a variety of formulations have been proposed [ACMLM03,

CL07, DKS16]. The k-Center problem [Gon85, AP02, HN79] is a classical problem

in which a point set in a metric space is clustered. The problem is defined as follows:

given a set P of n points, find a set G of k center points, such that the maximum

distance from a point in P to a nearest point in G is minimized.

Given an appropriate metric for curves, such as the discrete Fréchet distance, one

can define a metric space on the space of curves and then use a known algorithm for

point clustering. The clustering obtained by the k-Center problem is useful in that

it groups similar curves together, thus uncovering a structure in the collection, and

furthermore the center curves are of value as each can be viewed as a representative

or exemplar of its cluster, and so the center curves are a compact summary of the

collection. However, an issue with this formulation, when applied to curves, is that

the optimal center curves may be noisy, i.e., the size of such a curve may be linear

in the total number of vertices in its cluster, see [DKS16] for a detailed description.

This can significantly reduce the utility of the centers as a method of summarizing

the collection, as the centers should ideally be of low complexity. To address this

issue, Driemel et al. [DKS16] introduced the (k, ℓ)-Center problem, where the

k desired center curves are limited to at most ℓ vertices each.

Several hardness of approximation results for both the NNC and (k, ℓ)-Center

problems are known. For the NNC problem under the discrete Fréchet distance, no

data structure exists requiringO(n2−ε polylogm) preprocessing andO(n1−ε polylogm)

query time for ε > 0, and achieving an approximation factor of c < 3, unless the

strong exponential time hypothesis fails [IM04, DKS16]. Dreimel and Silvestri [DS17]

show that unless the orthogonal vectors hypothesis fails, there exists no data structure

for range searching or nearest neighbor searching under the (discrete or continuous)

Fréchet distance that can be built in O(n2−εpoly(m)) time and achieves query time

in O(n1−εpoly(m)) for any ε > 0. In the case of the (k, ℓ)-Center problem under

the discrete Fréchet distance, Driemel et al. showed that the problem is NP-hard

to approximate within a factor of 2 − ε when k is part of the input, even if ℓ = 2

and d = 1. Furthermore, the problem is NP-hard to approximate within a factor

2 − ε when ℓ is part of the input, even if k = 2 and d = 1, and when d = 2 the

inapproximability bound is 3 sin π/3 ≈ 2.598 [BDG+19].

However, we are interested in algorithms that can process large inputs, i.e., where

n and/or m are large, which suggests that the processing time ought to be near-linear

in nm and the query time for NNC queries should be near-linear in m only. The

above results imply that algorithms for the NNC and (k, ℓ)-Center problems

that achieve such running times are not realistic. Moreover, given that strongly

subquadratic algorithms for computing the discrete Fréchet distance are unlikely

to exist, an algorithm that must compute pairwise distances explicitly will incur a
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roughly O(m2) running time. To circumvent these constraints, we focus on specific

important settings: for the NNC problem, either the query curve is assumed to be a

segment or the input curves are segments; and for the (k, ℓ)-Center problem the

center is a segment and k = 1, i.e., we focus on the (1, 2)-Center problem.

While these restricted settings are of theoretical interest, they also have a practical

motivation when the inputs are trajectories of objects moving through space, such

as migrating birds. A segment ab can be considered a trip from a starting point a

to a destination b. Given a set of trajectories that travel from point to point in a

noisy manner, we may wish to find the trajectory that most closely follows a direct

path from a to b, which is the NNC problem with a segment query. Conversely,

given an input of (directed) segments and a query trajectory, the NNC problem

would identify the segment (the simplest possible trajectory, in a sense) that the

query trajectory most closely resembles. In the case of the (1, 2)-Center problem,

the obtained segment center for an input of trajectories would similarly represent

the summary direction of the input, and the radius r∗ of the solution would be a

measure of the maximum deviation from that direction for the collection.

Our results. We present algorithms for a variety of settings (summarized in the

table below) that achieve the desired running time and storage bounds. Under the

L∞ metric, we give exact algorithms for the NNC and (1, 2)-Center problems,

including under translation, that achieve the roughly linear bounds. For the L2

metric, (1+ ε)-approximation algorithms with near-linear running times are given for

the NNC problem, and for the (1, 2)-Center problem, an exact algorithm is given

whose running time is roughly O(n2m3) and whose space requirement is quadratic.

(Parentheses point to results under translation)

Input/query: Input/query: Input:

m-curves/segment segments/m-curve (1,2)-center

L∞ Section 6.3.1 (Section 6.5.1) Section 6.3.2 (Section 6.5.2) Section 6.6.1 (Section 6.6.2)

L2 Section 6.4.1 Section 6.4.2 Section 6.6.3

6.2 Preliminaries

The discrete Fréchet distance is a measure of similarity between two curves, defined

as follows. Consider the curves C = (p1, . . . , pm) and C ′ = (q1, . . . , qm′), viewed

as sequences of vertices. A (monotone) alignment of the two curves is a sequence

τ := ⟨(pi1 , qj1), . . . , (piv , qjv)⟩ of pairs of vertices, one from each curve, with (i1, j1) =

(1, 1) and (iv, jv) = (m,m′). Moreover, for each pair (iu, ju), 1 < u ≤ v, one of the
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following holds: (i) iu = iu−1 and ju = ju−1 + 1, (ii) iu = iu−1 + 1 and ju = ju−1, or

(iii) iu = iu−1 + 1 and ju = ju−1 + 1. The discrete Fréchet distance is defined as

dddF (C,C
′) = min

τ∈T
max
(i,j)∈τ

d(pi, qj),

with the minimum taken over the set T of all such alignments τ , and where d denotes

the metric used for measuring interpoint distances.

We now give two alternative, equivalent definitions of the discrete Fréchet distance

between a segment s = ab and a polygonal curve C = (p1, . . . , pm) (we will drop

the point metric d from the notation, where it is clear from the context). Let

C[i, j] := {pi, . . . , pj}.
Denote by B(p, r) the ball of radius r centered at p, in metric d. The discrete

Fréchet distance between s and C is at most r, if and only if there exists a partition

of C into a prefix C[1, i] and a suffix C[i+ 1,m], such that B(a, r) contains C[1, i]

and B(b, r) contains C[i+ 1,m].

A second equivalent definition is as follows. Consider the intersections of balls

around the points of C. Set Ii(r) = B(p1, r) ∩ · · · ∩B(pi, r) and I i(r) = B(pi+1, r) ∩
· · · ∩B(pm, r), for i = 1, . . . ,m− 1. Then, the discrete Fréchet distance between s

and C is at most r, if and only if there exists an index 1 ≤ i ≤ m − 1 such that

a ∈ Ii(r) and b ∈ I i(r).

Given a set C = {C1, . . . , Cn} of n polygonal curves in the plane, the nearest-

neighbor problem for curves is formulated as follows:

Problem 6.1 (NNC). Preprocess C into a data structure, which, given a query

curve Q, returns a curve C ∈ C with ddF (Q,C) = minCi∈C ddF (Q,Ci).

We consider two variants of Problem 6.1: (i) when the query curve Q is a segment,

and (ii) when the input C is a set of segments.

Secondly, we consider a particular case of the (k, ℓ)-Center problem for curves [DKS16].

Problem 6.2 ((1, 2)-Center). Find a segment s∗ that minimizes maxCi∈C ddF (s, Ci),

over all segments s.

6.3 NNC and L∞ metric

When d is the L∞ metric, each ball B(pi, r) is a square. Denote by S(p, d) the

axis-parallel square of radius d centered at p.

Given a curve C = (p1, . . . , pm), let di, for i = 1, . . . ,m − 1, be the smallest

radius such that S(p1, di) ∩ · · · ∩ S(pi, di) ̸= ∅. In other words, di is the radius of

the smallest enclosing square of C[1, i]. Similarly, let di, for i = 1, . . . ,m− 1, be the

smallest radius such that S(pi+1, di) ∩ · · · ∩ S(pm, di) ̸= ∅.
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For any d > di, S(p1, d)∩ · · · ∩S(pi, d) is a rectangle, Ri = Ri(d), defined by four

sides of the squares S(p1, d), . . . , S(pi, d), see Figure 6.1. These sides are fixed and

do not depend on the specific value of d. Furthermore, the left, right, bottom and

top sides of Ri(d) are provided by the sides corresponding to the right-, left-, top-

and bottom-most vertices in C[1, i], respectively, i.e., the sides corresponding to the

vertices defining the bounding box of C[1, i].

pib

pit
pi`

pir

Ri

a

Figure 6.1: The rectangle Ri(d) and the vertices of the ith prefix of C that define it.

Denote by piℓ the vertex in the ith prefix of C that contributes the left side

to Ri(d), i.e., the left side of S(piℓ, d) defines the left side of Ri(d). Furthermore,

denote by pir, p
i
b, and pit the vertices of the ith prefix of C that contribute the right,

bottom, and top sides to Ri(d), respectively. Similarly, for any d > di, we denote

the four vertices of the ith suffix of C that contribute the four sides of the rectangle

Ri(d) = S(pi+1, d) ∩ · · · ∩ S(pm, d) by piℓ, p
i
r, p

i
b, and pit, respectively.

Finally, we use the notation Rj
i = Rj

i (d) (R
j

i = R
j

i (d)) to refer to the rectangle

Ri = Ri(d) (Ri = Ri(d)) of curve Cj.

Observation 6.3. Let s = ab be a segment, C be a curve, and let d > 0. Then,

ddF (s, C) ≤ d if and only if there exists i, 1 ≤ i ≤ m− 1, such that a ∈ Ri(d) and

b ∈ Ri(d).

6.3.1 Query is a segment

Let C = {C1, . . . , Cn} be the input curves, each of size m. Given a query segment

s = ab, the task is to find a curve C ∈ C such that ddF (s, C) = minC′∈C ddF (s, C
′).

The data structure. The data structure is an eight-level search tree. The first

level of the data structure is a search tree for the x-coordinates of the vertices piℓ,

over all curves C ∈ C, corresponding to the nm left sides of the nm rectangles Ri(d).

The second level corresponds to the nm right sides of the rectangles Ri(d), over all

curves C ∈ C. That is, for each node u in the first level, we construct a search tree

for the subset of x-coordinates of vertices pir which corresponds to the canonical

set of u. Levels three and four of the data structure correspond to the bottom and

top sides, respectively, of the rectangles Ri(d), over all curves C ∈ C, and they are

constructed using the y-coordinates of the vertices pib and the y-coordinates of the
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vertices pit, respectively. The fifth level is constructed as follows. For each node u in

the fourth level, we construct a search tree for the subset of x-coordinates of vertices

piℓ which corresponds to the canonical set of u; that is, if the y-coordinate of pjt is in

u’s canonical subset, then the x-coordinate of pjℓ is in the subset corresponding to u’s

canonical set. The bottom four levels correspond to the four sides of the rectangles

Ri(d) and are built using the x-coordinates of the vertices piℓ, the x-coordinates of

the vertices pir, the y-coordinates of the vertices pib, and the y-coordinates of the

vertices pit, respectively.

The query algorithm. Given a segment s = ab and a distance d > 0, we can

use our data structure to determine whether there exists a curve C ∈ C, such that

ddF (s, C) ≤ d. The search in the first and second levels of the data structure is done

with a.x, the x-coordinate of a, in the third and fourth levels with a.y, in the fifth

and sixth levels with b.x and in the last two levels with b.y. When searching in the

first level, instead of performing a comparison between a.x and the value v that is

stored in the current node (which is an x-coordinate of some vertex piℓ), we determine

whether a.x ≥ v − d. Similarly, when searching in the second level, at each node

that we visit we determine whether a.x ≤ v + d, where v is the value that is stored

in the node, etc.

Notice that if we store the list of curves that are represented in the canonical

subset of each node in the bottom (i.e., eighth) level of the structure, then curves

whose distance from s is at most d may also be reported in additional time roughly

linear in their number.

Finding the closest curve. Let s = ab be a segment, let C be the curve in C
that is closest to s and set d∗ = ddF (s, C). Then, there exists 1 ≤ i ≤ m− 1, such

that a ∈ Ri(d
∗) and b ∈ Ri(d

∗). Moreover, one of the endpoints a or b lies on the

boundary of its rectangle, since, otherwise, we could shrink the rectangles without

‘losing’ the endpoints. Assume without loss of generality that a lies on the left side

of Ri(d
∗). Then, the difference between the x-coordinate of the vertex piℓ and a.x

is exactly d∗. This implies that we can find d∗ by performing a binary search in

the set of all x-coordinates of vertices of curves in C. In each step of the binary

search, we need to determine whether d ≥ d∗, where d = v− a.x and v is the current

x-coordinate, and our goal is to find the smallest such d for which the answer is still

yes. We resolve a comparison by calling our data structure with the appropriate

distance d. Since we do not know which of the two endpoints, a or b, lies on the

boundary of its rectangle and on which of its sides, we perform 8 binary searches,

where each search returns a candidate distance. Finally, the smallest among these 8

candidate distances is the desired d∗.

In other words, we perform 4 binary searches in the set of all x-coordinates of
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vertices of curves in C. In the first we search for the smallest distance among the

distances dℓ = v− a.x for which there exists a curve at distance at most dℓ from s; in

the second we search for the smallest distance dr = a.x− v for which there exists a

curve at distance at most dr from s; in the third we search for the smallest distance

dℓ = v − b.x for which there exists a curve at distance at most dℓ from s; and in the

fourth we search for the smallest distance dr = b.x− v for which there exists a curve

at distance at most dr from s. We also perform 4 binary searches in the set of all

y-coordinates of vertices of curves in C, obtaining the candidates db, dt, db, and dt.

We then return the distance d∗ = min{dℓ, dr, dℓ, dr, db, du, db, du}.

Theorem 6.4. Given a set C of n curves, each of size m, one can construct a search

structure of size O(nm log7(nm)) for segment nearest-curve queries. Given a query

segment s, one can find in O(log8(nm)) time the curve C ∈ C and distance d∗ such

that ddF (s, C) = d∗ and d∗ ≤ ddF (s, C
′) for all C ′ ∈ C, under the L∞ metric.

6.3.2 Input is a set of segments

Let S = {s1, . . . , sn} be the input set of segments. Given a query curve Q =

(p1, . . . , pm), the task is to find a segment s = ab ∈ S such that ddF (Q, s) =

mins′∈S ddF (Q, s′), after suitably preprocessing S. We use an overall approach similar

to that used in Section 6.3.1, however the details of the implementation of the data

structure and algorithm differ.

The data structure. Preprocess the input S into a four-level search structure T
consisting of a two-dimensional range tree containing the endpoints a, and where

the associated structure for each node in the second level of the tree is another

two-dimensional range tree containing the endpoints b corresponding to the points

in the canonical subset of the node.

This structure answers queries consisting of a pair of two-dimensional ranges (i.e.,

rectangles) (R,R) and returns all segments s = ab such that a ∈ R and b ∈ R. The

preprocessing time for the structure is O(n log4 n), and the storage is O(n log3 n).

Querying the structure with two rectangles requires O(log3 n) time, by applying

fractional cascading [WL85].

The query algorithm. Consider the decision version of the problem where, given

a query curve Q and a distance d, the objective is to determine if there exists a

segment s ∈ S with ddF (s,Q) ≤ d. Observation 6.3 implies that it is sufficient to

query the search structure T with the pair of rectangles (Ri(d), Ri(d)) of the curve

Q, for all 1 ≤ i ≤ m− 1. If T returns at least one segment for any of the partitions,

then this segment is within distance d of Q.

As we traverse the curve Q left-to-right, the bounding box of Q[1, i] can be

computed at constant incremental cost. For a fixed d > 0, each rectangle Ri(d) can be
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constructed from the corresponding bounding box in constant time. Rectangle Ri(d)

can be handled similarly by a reverse traversal. Hence all the rectangles can be

computed in time O(m), for a fixed d. Each pair of rectangles requires a query in T ,
and thus the time required to answer the decision problem is O(m log3 n).

Finding the closest segment. In order to determine the nearest segment s to Q,

we claim, using an argument similar to that in Section 6.3.1, for a segment s = ab

of distance d∗ from Q that either a lies on the boundary of Ri(d
∗) or b lies on the

boundary of Ri(d
∗) for some 1 ≤ i < m.

Thus, in order to determine the value of d∗ it suffices to search over all 8m pairs

of rectangles where either a or b lies on one of the eight sides of the obtained query

rectangles.

The sorted list of candidate values of d for each side can be computed in O(n)

time from a sorted list of the corresponding x- or y-coordinates of a or b. The

smallest value of d for each side is then obtained by a binary search of the sorted list

of candidate values. For each of the O(log n) evaluated values d, a call to T decides

on the existence of a segment within d of Q.

Theorem 6.5. Given an input S of n segments, a search structure can be preprocessed

in O(n log4 n) time and requiring O(n log3 n) storage that can answer the following.

For a query curve Q of m vertices, find the segment s∗ ∈ S and distance d∗ such that

ddF (Q, s∗) = d∗ and ddF (Q, s) ≥ d∗ for all s ∈ S under the L∞ metric. The time to

answer the query is O(m log4 n).

6.4 NNC and L2 metric

In this section, we present algorithms for approximate nearest-neighbor search under

the discrete Fréchet distance using L2. Notice that the algorithms from Section 6.3

for the L∞ version of the problem, already give
√
2-approximation algorithms for

the L2 version. Next, we provide (1 + ε)-approximation algorithms.

6.4.1 Query is a segment

Let C = {C1, . . . , Cn} be a set of n polygonal curves in the plane. The (1 + ε)-

approximate nearest-neighbor problem is defined as follows: Given 0 < ε ≤ 1,

preprocess C into a data structure supporting queries of the following type: given

a query segment s, return a curve C ′ ∈ C, such that ddF (s, C
′) ≤ (1 + ε)ddF (s, C),

where C is the curve in C closest to s.

Here we provide a data structure for the (1 + ε, r)-approximate nearest-neighbor

problem, defined as: Given a parameter r and 0 < ε ≤ 1, preprocess C into a data

structure supporting queries of the following type: given a query segment s, if there
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exists a curve Ci ∈ C such that ddF (s, Ci) ≤ r, then return a curve Cj ∈ C such that

ddF (s, Cj) ≤ (1 + ε)r.

There exists a reduction from the (1 + ε)-approximate nearest-neighbor problem

to the (1 + ε, r)-approximate nearest-neighbor problem [Ind00], at the cost of an

additional logarithmic factor in the query time.

An exponential grid. Given a point p ∈ R2, a parameter 0 < ε ≤ 1, and an

interval [α, β] ⊆ R, we can construct the following exponential grid G(p) around p,

which is a slightly different version of the exponential grid presented in [Dri13]:

Consider the series of axis-parallel squares Si centered at p and of side lengths

λi = 2iα, for i = 1, . . . , ⌈log(β/α)⌉. Inside each region Si \Si−1 (for i > 1), construct

a grid Gi of side length ελi

2
√
2
. The total number of grid cells is at most

1 +

⌈log(β/α)⌉∑
i=2

(
λi/

ελi

2
√
2

)2
= O((1/ε)2⌈log(β/α)⌉).

Given a point q ∈ R2 such that α ≤ ∥q − p∥ ≤ β, let i be the smallest index such

that q ∈ Si. If q is in S1, then ∥q − p∥ ≤
√
2α. Else, we have i > 1. Let g be the

grid cell of Gi that contains q, and denote by cg the center point of g. So we have

∥q − cg∥ ≤
√
2
2

ελi

2
√
2
= ε

2
2i−1α ≤ ε

2
2log(β/α)α = εβ

2
.

A data structure for (1 + ε, r)-ANNC. For each curve Ci = (pi1, . . . , p
i
m) ∈ C, we

construct two exponential grids: G(pi1) around pi1 and G(pim) around pim, both

with the range [ εr
2
√
2
, r], as described above. Now, for each pair of grid cells

(g, h) ∈ G(pi1)×G(pim), let C(g, h) = C ∈ C be the curve such that ddF (cgch, C) =

minj{ddF (cgch, Cj)}. In other words, C(g, h) is the closest input curve to the segment

cgch.

Let G1 be the union of the grids G(p11), G(p21), . . . , G(pn1 ), and Gm the union

of the grids G(p1m), G(p2m), . . . , G(pnm). The number of grid cells in each grid is

O((1/ε)2⌈log(r/ εr
2
√
2
)⌉) = O( 1

ε2
log(1/ε)). The number of grid cells in G1 and Gm is

thus O(n 1
ε2
log(1/ε)).

The data structure is a four-level segment tree, where each grid cell is represented

in the structure by its bottom- and left-edges. The first level is a segment tree for the

horizontal edges of the cells of G1. The second level corresponds to the vertical edges

of the cells of G1: for each node u in the first level, a segment tree is constructed

for the set of vertical edges that correspond to the horizontal edges in the canonical

subset of u. That is, if some horizontal edge of a cell in G(pi1) is in u’s canonical

subset, then the vertical edge of the same cell is in the segment tree of the second

level associated with u. Levels three and four of the data structure correspond to

the horizontal and vertical edges, respectively, of the cells in Gm.
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The third level is constructed as follows. For each node u in the second level, we

construct a segment tree for the subset of horizontal edges of cells in Gm which corre-

sponds to the canonical set of u; that is, if a vertical edge of G(pi1) is in u’s canonical

subset, then all the horizontal edges of G(pim) are in the subset corresponding to u’s

canonical set. Thus, the size of the third-level subset is O( 1
ε2
log(1/ε)) times the size

of the second-level subset.

Each node of the forth level corresponds to a subset of pairs of grid cells from the

set
n⋃

i=1

(G(pi1) × G(pim)). In each such node u we store the curve C(g, h) such that

(g, h) is the pair in u’s corresponding set for which ddF (cgch, C(g, h)) is minimum.

Given a query segment s = ab, we can obtain all pairs of grid cells (g, h) ∈
n⋃

i=1

(G(pi1) × G(pim)), such that a ∈ g and b ∈ h, as a collection of O(log4(n
ε
))

canonical sets in O(log4(n
ε
)) time. Then, we can find, within the same time bound,

the pair of cells g, h among them for which ddF (cgch, C(g, h)) is minimum. The space

required is O(n 1
ε4
log4(n

ε
)).

The query algorithm. Given a query segment s = ab, let p, q be the pair of cell

center points returned when querying the data structure with s, and let Cj ∈ C be the
closest curve to pq. We show that if there exists a curve Ci ∈ C with ddF (ab, Ci) ≤ r,

then ddF (ab, Cj) ≤ (1 + ε)r.

Since ddF (ab, Ci) ≤ r, it holds that ddF (ab, p
i
1p

i
m) ≤ r, and thus there exists a

pair of grid cells g ∈ G(pi1) and h ∈ G(pim) such that a ∈ g and b ∈ h. The data

structure returns p, q, so we have ddF (pq, Cj) ≤ ddF (cgch, Ci) (1). The properties

of the exponential grids G(pi1) and G(pim) guarantee that ∥a − cg∥, ∥b − ch∥ ≤
max{

√
2α, εβ

2
} = ε

2
r. Therefore, ddF (cgch, ab) ≤ ε

2
r (2), and, similarly, ddF (pq, ab) ≤

ε
2
r (3). By the triangle inequality and Equation (2), ddF (cgch, Ci) ≤ ddF (cgch, ab) +

ddF (ab, Ci) ≤ (1 + ε
2
)r (4). Finally, by the triangle inequality and Equations (1), (3)

and (4),

ddF (ab, Cj) ≤ ddF (ab, pq) + ddF (pq, Cj) ≤ ddF (ab, pq) + ddF (cgch, Ci)

≤ ε

2
r + (1 +

ε

2
)r = (1 + ε)r .

Theorem 6.6. Given a set C of n curves, each of size m, and 0 < ε ≤ 1, one can

construct a search structure of size O( n
ε4
log4(n

ε
)) for approximate segment nearest-

neighbor queries. Given a query segment s, one can find in O(log5(n
ε
)) time a curve

C ′ ∈ C such that ddF (s, C
′) ≤ (1 + ε)ddF (s, C), under the L2 metric, where C is the

curve in C closest to s.
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6.4.2 Input is a set of segments

In Section 6.3.2, we presented an exact algorithm for the problem under L∞, in

which we compute the intersections of the squares of radius d around the vertices of

the query curve, and use a two-level data structure for rectangle-pair queries.

To achieve an approximation factor of (1 + ε) for the problem under L2, we can

use the same approach, except that instead of squares we use regular k-gons. Given

a query curve Q = (p1, . . . , pm), the intersections of the regular k-gons of radius d

around the vertices of Q are polygons with at most k edges, defined by at most k

sides of the regular k-gons. The orientations of the edges of the intersections are

fixed, and thus we can construct a two-level data structure for k-gon-pair queries,

where each level consists of k inner levels, one for each possible orientation. The size

of such a data structure is thus O(n log2k n).

Given a parameter ε, we pick k = O( 1√
ε
), so that the approximation factor is

(1+ε), the space complexity is O(n log
O( 1√

ε
)
n) and the query time is O(m log

O( 1√
ε
)
n).

Theorem 6.7. Given an input S of n segments, and 0 < ε ≤ 1, one can construct

a search structure of size O(n log
O( 1√

ε
)
n) for approximate segment nearest-neighbor

queries. Given a query curve Q of size m, one can find in O(m log
O( 1√

ε
)
n) time a

segment s′ ∈ S such that ddF (s
′, Q) ≤ (1 + ε)ddF (s,Q), under the L2 metric, where

s is the segment in S closest to Q.

6.5 NNC under translation and L∞ metric

An analogous approach yields algorithms with similar running times for the problems

under translation.

For a curve C and a translation t, let Ct be the curve obtained by translating

C by t, i.e., by translating each of the vertices of C by t. In this section we study

the two problems studied in Section 6.3, assuming the input curves are given up to

translation. That is, the distance between the query curve Q and an input curve C

is now mint ddF (Q,Ct), where the discrete Fréchet distance is computed using the

L∞ metric.

6.5.1 Query is a segment

Let C = {C1, . . . , Cn} be the set of input curves, each of size m. We need to

preprocess C for segment nearest-neighbor queries under translation, that is, given

a query segment s = ab, find the curve C ∈ C that minimizes mint ddF (s, C
′
t) =

mint ddF (st, C
′), where st and Ct are the images of s and C, respectively, under

the translation t. Let t∗ be the translation that minimizes ddF (st, C), and set

d∗ = ddF (st∗ , C). Consider the partition of C = (p1, . . . , pm) into prefix C[1, i] and
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suffix C[i + 1,m], such that at∗ ∈ Ri(d
∗) and bt∗ ∈ Ri(d

∗). The following trivial

observation allows us to construct a set of values to which d∗ must belong.

Observation 6.8. One of the following statements holds:

1. at∗ lies on the left side of Ri(d
∗) and bt∗ lies on the right side of Ri(d

∗), or vice

versa, i.e., at∗ lies on the right side of Ri(d
∗) and bt∗ lies on the left side of

Ri(d
∗).

2. at∗ lies on the bottom side of Ri(d
∗) and bt∗ lies on the top side of Ri(d

∗), or

vice versa.

Assume without loss of generality that a.x < b.x and a.y < b.y and that the first

statement holds. Let δx = b.x−a.x denote the x-span of s, and let δy denote the y-span

of s. Then, either (i) (pir.x+d∗)−(pil.x−d∗) = δx, or (ii) (p
i
l.x−d∗)−(pir.x+d∗) = δx,

where as before pil (p
i
r) is the vertex of C which determines the left (right) side of Ri

and pil (p
i
r) is the vertex of C which determines the left (right) side of Ri. That is,

either (i) d∗ =
δx−(pir.x−pil .x)

2
, or (ii) d∗ =

(pil .x−pir.x)−δx
2

.

The data structure. Consider the decision version of the problem: Given d, is

there a curve in C whose distance from s under translation is at most d? We now

present a five-level data structure to answer such decision queries. We continue to

assume that a.x < b.x and a.y < b.y. For a curve Cj, let dji (d
j

i ) be the smallest

radius such that Rj
i (R

j

i ) is non-empty, and set rji = max{dji , d
j

i}. The top level of

the structure is simply a binary search tree on the n(m− 1) values rji ; it serves to

locate the pairs (Rj
i (d), R

j

i (d)) in which both rectangles are non-empty. The role of

the remaining four levels is to filter the set of relevant pairs, so that at the bottom

level we remain with those pairs for which s can be translated so that a is in the

first rectangle and b is in the second.

For each node v in the top level tree, we construct a search tree over the values

pir.x − pil.x corresponding to the pairs in the canonical subset of v. These trees

constitute the second level of the structure. The third-level trees are search trees

over the values pil.x− pir.x, the fourth-level ones — over the values pit.y − pib.y, and

finally the fifth-level ones — over the values pib.y − pit.y.

The query algorithm. Given a query segment s = ab (with a.x < b.x and a.y < b.y)

and d > 0, we employ our data structure to answer the decision problem. In the

top level, we select all pairs (Rj
i , R

j

i ) satisfying rji ≤ d. Of these pairs, in the second

level, we select all pairs satisfying pir.x− pil.x ≥ δx − 2d. In the third level, we select

all pairs satisfying pil.x − pir.x ≤ δx + 2d. Similarly, in the fourth level, we select

all pairs satisfying pit.y − pib.y ≥ δy − 2d, and in the fifth level, we select all pairs

satisfying pib.y− pit.y ≤ δy +2d. At this point, if our current set of pairs is non-empty,

we return yes, otherwise, we return no.
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To find the nearest curve C and the corresponding distance d∗, we proceed as

follows, utilizing the observation above. We perform a binary search over the O(nm)

values of the form pir.x−pil.x to find the largest value for which the decision algorithm

returns yes on d =
δx−(pir.x−pil .x)

2
. (We only consider the values pir.x− pil.x that are

smaller than δx.) Similarly, we perform a binary search over the values pit.y − pib.y to

find the largest value for which the decision algorithm returns yes on d =
δy−(pit.y−pib.y)

2
.

We perform two more binary searches; one over the values pil.x − pir.x to find the

smallest value for which the decision algorithms returns yes on d =
(pil .x−pir.x)−δx

2
,

and one over the values pib.y − pit.y. Finally, we return the smallest d for which the

decision algorithm has returned yes.

Our data structure was designed for the case where b lies to the right and above a.

Symmetric data structures for the other three cases are also needed. The following

theorem summarizes the main result of this section.

Theorem 6.9. Given a set C of n curves, each of size m, one can construct a search

structure of size O(nm log4(nm)), such that, given a query segment s, one can find

in O(log6(nm)) time the curve C ∈ C nearest to s under translation, that is the

curve minimizing mint ddF (st, C
′), where the discrete Fréchet distance is computed

using the L∞ metric.

6.5.2 Input is a set of segments

Let S = {s1, . . . , sn} be the input set of segments, with si = aibi. We need to

preprocess S for nearest-neighbor queries under translation, that is, given a query

curveQ = (p1, . . . , pm), find the segment s = ab ∈ S that minimizes mint ddF (Q, s′t) =

mint ddF (Qt, s
′). Since translations are allowed, without loss of generality we can

assume that the first point of all the segments is the origin. In other words, the input

is converted to a two-dimensional point set C = {ci = bi − ai | aibi ∈ S}.
The idea is to find the nearest segment corresponding to each of the m − 1

partitions of the query. Let s = ab be any segment and d some radius. The

following observation holds for any partition of Q into Q[1, i] and Q[i+ 1,m], where

R⊕
i (d) = (−Ri(d))⊕Ri(d) and ⊕ is the Minkowski sum operator, see Figure 6.2.

R⊕
i (d)Ri(d)Ri(d)

Figure 6.2: The rectangle R⊕
i (d), as d increases.

Observation 6.10. There exists a translation t such that at ∈ Ri(d) and bt ∈ Ri(d)

if and only if c = b− a ∈ R⊕
i (d).
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Based on this observation segment ab is within distance d of Q under translation,

if for some i, R⊕
i (d) contains the point c = b− a, which means translations can be

handled implicitly.

The data structure. According to Observation 6.10, a data structure is required

to answer the following question: Given a partition of Q into prefix Q[1, i] and suffix

Q[i+1,m], what is the smallest radius d∗ so that R⊕
i (d

∗) contains some cj ∈ C? The

smallest radius d′ where both Ri(d
′) and Ri(d

′)—and hence R⊕
i (d

′)—are nonempty

can be determined in linear time. This value which depends on i is a lower bound

on d∗.

Since −Ri(d
′) and Ri(d

′) are both axis-aligned rectangles (segments or points in

special cases), their Minkowski sum, R⊕
i (d

′), is also a possibly degenerate axis-aligned

rectangle. If this rectangle contains some point cj ∈ C, then sj is the nearest segment

with respect to this partition and the optimal distance is d′. If it contains more

than one point from C, then all the corresponding segments are equidistant from the

query and each of them can be reported as the nearest neighbor corresponding to

this partition. The data structure needed here is a two-dimensional range tree on C.
If R⊕

i (d
′)∩ C is empty, then we need to find the smallest radius d∗ so that R⊕

i (d
∗)

contains some cj. For any distance d > d′, R⊕
i (d) is a rectangle concentric with

R⊕
i (d

′) but whose edges are longer by an additive amount of 4(d− d′).

As d increases, the four edges of the rectangle sweep through 4 non-overlapping

regions in the plane, so any point in the plane that gets covered by R⊕
i (d), first

appears on some edge. We divide this problem into 4 sub-problems based on the

edge that the optimal cj might appear on. Below, we solve the sub-problem for

the right edge of the rectangle: Given a partition of Q into prefix Q[1, i] and suffix

Q[i+ 1,m], what is the smallest radius d∗r so that the right edge of R⊕
i (d

∗
r) contains

some cj? All other sub-problems are solved symmetrically.

Any point cj that appears on the right edge belongs to the intersection of three

half-planes:

1. On or below the line of slope +1 passing through the top-right corner of the

rectangle R⊕
i (d

′).

2. On or above the line of slope −1 passing through the bottom-right corner of

R⊕
i (d

′).

3. To the right of the line through the right edge of R⊕
i (d

′).

The first point in this region swept by the right edge of the growing rectangle

R⊕
i (d) is the one with the smallest x-coordinate. This point can be located using a

three-dimensional range tree on C.
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The query algorithm. Given a query curve Q = (p1, . . . , pm), the nearest segment

under translation can be determined by using the data structure to find the nearest

segment—and its distance from Q—for each of the m− 1 partitions and selecting

the segment whose distance is smallest.

As stated in Section 6.3.2, all O(m) bounding boxes can be computed in O(m)

total time. For a particular partition, knowing the two bounding boxes, one can

determine the smallest radius d′ where R⊕
i (d

′) is nonempty in constant time. Now

the two-dimensional range tree on C is used to search for points inside R⊕
i (d

′). If the

data structure returns some point c ∈ C, then the segment corresponding to c is the

nearest segment under translation. Otherwise, one has to do four three-level range

searches in the second data structure and compare the results to find the nearest

segment. This is the most expensive step which takes O(log2 n) time using fractional

cascading [WL85]. The following theorem summarizes the main result of this section.

Theorem 6.11. Given a set S of n segments, one can construct a search structure of

size O(n log2 n), so that, given a query curve Q of size m, one can find in O(m log2 n)

time the segment s ∈ S nearest to Q under translation, that is the segment minimizing

mint ddF (Q, s′t), where the discrete Fréchet distance is computed using the L∞ metric.

6.6 (1, 2)-Center

The objective of the (1, 2)-Center problem is to find a segment s such that

maxCi∈C ddF (s, Ci) is minimized. This can be reformulated equivalenly as: Find

a pair of balls (B,B), such that (i) for each curve C ∈ C, there exists a partition

at 1 ≤ i < m of C into prefix C[1, i] and suffix C[i + 1,m], with C[1, i] ⊆ B and

C[i+ 1,m] ⊆ B, and (ii) the radius of the larger ball is minimized.

6.6.1 (1, 2)-Center and L∞ metric

An optimal solution to the (1, 2)-Center problem under the L∞ metric is a pair of

squares (S, S), where S contains all the prefix vertices and S contains all the suffix

vertices. Assume that the optimal radius is r∗, and that it is determined by S, i.e.,

the radius of S is r∗ and the radius of S is at most r∗. Then, there must exist two

determining vertices p, p′, belonging to the prefixes of their respective curves, such

that p and p′ lie on opposite sides of the boundary of S. Clearly, ||p− p′||∞ = 2r∗.

Let the positive normal direction of the sides be the determining direction of the

solution.

Let R be the axis-aligned bounding rectangle of C1 ∪ · · · ∪ Cn, and denote by eℓ,

er, et, and eb the left, right, top, and bottom edges of R, respectively.

Lemma 6.12. At least one of p, p′ must lie on the boundary of R.
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Proof. Assume that the determining direction is the positive x-direction, and that

neither p nor p′ lies on the boundary of R. Thus, there must exist a pair of vertices

q, q′ ∈ S with q.x < p.x and q′.x > p′.x, which implies that ||q− q′||∞ > ||p− p′||∞ =

2r∗, contradicting the assumption that p, p′ are the determining vertices.

We say that a corner of S (or S) coincides with a corner of R when the corner

points are incident, and they are both of the same type, i.e., top-left, bottom-right,

etc.

Lemma 6.13. There exists an optimal solution (S, S) where at least one corner of S

or S coincides with a corner of R.

Proof. Let p, p′ ∈ S be a pair of determining vertices, and assume, without loss of

generality, that p lies on the boundary of R. If p is a corner of R, then the claim

trivially holds. Otherwise, p lies in the interior of an edge of R, and assume without

loss of generality that it lies on eℓ.

If S contains a vertex on et, then we can shift S vertically down until its top

edge overlaps et. Else, if it contains a vertex on eb, then we can shift S up until its

bottom edge overlaps eb. In both cases, the lemma conclusion holds.

If S does not contain any vertex from et or eb, then clearly S must contain vertices

q ∈ et and q′ ∈ eb with ||q − q′||∞ ≤ 2r∗. Therefore, S intersects eb or et (or both),

and can be shifted vertically until its boundary overlaps eb or et, as desired.

A symmetric argument can be made when p and p′ are suffix vertices, i.e.,

p, p′ ∈ S.

Lemma 6.13 implies that for a given input C where the determining vertices

are in S, there must exist an optimal solution where S is positioned so that one

of its corners coincides with a corner of the bounding rectangle, and that one of

the determining vertices is on the boundary of R. The optimal solution can thus

be found by testing all possible candidate squares that satisfy these properties and

returning the valid solution that yields the smallest radius. The algorithm presented

in the sequel will compute the radius r∗ of an optimal solution (S∗, S∗) such that

r∗ is determined by the prefix square S∗, see Figure 6.3. The solution where r∗ is

determined by S∗ can be computed in a symmetric manner.

For each corner v of the bounding rectangle R, we sort the (m− 2)n vertices in

C1 ∪ · · · ∪Cn that are not endpoints—the initial vertex of each curve must always be

contained in the prefix, and the final vertex in the suffix—by their L∞ distance from

v. Each vertex p in this ordering is associated with a square S of radius ||v− p||∞/2,

coinciding with R at corner v.

A sequential pass is made over the vertices, and their respective squares S, and

for each S we compute the radius of S and S using the following data structures.

We maintain a balanced binary tree TC for each curve C ∈ C, where the leaves of TC



6.6. (1, 2)-Center 83

R

S∗

S∗

p′

p

Figure 6.3: The optimal solution is characterized by a pair of points p, p′ lying on the
boundary of S∗, and a corner of S∗ coincides with a corner of R.

correspond to the vertices of C, in order. Each node of the tree contains a single bit:

The bit at a leaf node corresponding to vertex pj indicates whether pj ∈ S, where S

is the current square. The value of the bit at a leaf of TC can be updated in O(logm)

time. The bit of an internal node is 1 if and only if all the bits in the leaves of its

subtree are 1, and thus the longest prefix of C can be determined in O(logm) time.

At each step in the pass, the radius of S must also be computed, and this is

obtained by determining the bounding box of the suffix vertices. Thus, two balanced

binary trees are maintained: T x contains a leaf for each of the suffix vertices ordered

by their x-coordinate; and T y where the leaves are ordered by the y-coordinate. The

extremal vertices that determine the bounding box can be determined in O(logmn)

time. Finally, the current optimal squares S∗ and S∗, and the radius r∗ of S∗ are

persisted.

The trees TC1 , . . . , TCn are constructed with all bits initialized to 0, except for

the bit corresponding to the initial vertex in each tree which is set to 1, taking

O(nm) time in total. T x and T y are initialized to contain all non-initial vertices

in O(mn logmn) time. The optimal square S∗ containing all the initial vertices is

computed, and S∗ is set to contain the remaining vertices. The optimal radius r∗ is

the larger of the radii induced by S∗ and S∗.

At the step in the pass for vertex p of curve Cj whose associated square is S, the

leaf of TC corresponding to p is updated from 0 to 1 in O(logm) time. The index i of

the longest prefix covered by S can then be determined, also in O(logm) time. The

vertices from Cj that are now in the prefix must be deleted from T x and T y, and

although there may be O(m) of them in any iteration, each will be deleted exactly

once, and so the total update time over the entire sequential pass is O(mn logmn).

The radius of the square S is ∥v − p∥∞/2, and the radius of S can be computed in

O(logmn) time as half the larger of x- and y-extent of the suffix bounding box. The

optimal squares S∗, S∗, and the cost r∗ are updated if the radius of S determines

the cost, and the radius of S is less than the existing value of r∗.

Finally, we return the optimal pair of squares (S∗, S∗) with the minimal cost r∗.

Theorem 6.14. Given a set of curves C as input, an optimal solution to the (1, 2)-
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Center problem using the discrete Fréchet distance under the L∞ metric can be

computed in time O(mn logmn) using O(mn) storage.

6.6.2 (1, 2)-Center under translation and L∞ metric

The (1, 2)-Center problem under translation and the L∞ metric can be solved

using a similar approach.

The objective is to find a segment s∗ that minimizes the maximum discrete

Fréchet distance under L∞ between s∗ and the input curves whose locations are fixed

only up to translation. A solution will be a pair of squares (S, S) of equal size and

whose radius r∗ is minimal, such that, for each C ∈ C, there exists a translation t

and a partition index i where Ct[1, i] ⊂ S and Ct[i+ i,m] ⊂ S. Clearly, an optimal

solution will not be unique as the curves can be uniformly translated to obtain an

equivalent solution, and moreover, in general there is freedom to translate either

square in the direction of at least one of the x- or y-axes.

Let δx (C) be the x-extent of the curve C and δy(C) be the y-extent. Let R be

the closed rectangle whose bottom-left corner lies at the origin and whose top-right

corner is located at (δ∗x, δ
∗
y) where δ∗x := maxC∈C δx (C) and δ∗y := maxC∈C δy(C).

Furthermore, let wℓ and wr be the left- and right-most vertices in a curve with x-span

δ∗x, and let wt and wb be the top- and bottom-most vertices in a curve with y-span δ∗y .

Clearly, all curves in C can be translated to be contained within R, and for all such

sets of curves under translation, the extremal vertices wt, wb, wℓ and wr each must

lie on the corresponding side of R. We claim that if a solution exists with radius r∗,

then an equivalent solution (S, S) can be obtained using the same partition of each

curve, where S and S are placed at opposite corners of R.

Lemma 6.15. Given a set C of n curves, if there exists a solution of radius r∗ to

the problem, then there also exists a solution (S, S) of radius r∗ where a corner of S

and a corner of S coincide with opposite corners of the rectangle R.

Proof. Let (S ′, S ′) be a solution of radius r∗ where all the curves under translation

are not necessarily contained in R, and the corners of S ′ and S ′ do not coincide with

the corners of R. The proof is constructive: The coordinate system is defined such

that prefix square S ′ is positioned so that its corner coincides with the appropriate

corner of R ensuring that S ′ ≡ S, and we define a continuous family of squares S(λ)

parameterized on λ ∈ [0, 1] where S(0) = S ′ and S(1) = S, such that S coincides

with the opposite corner of R. This family traces a translation of S(λ), first in the

x-direction and then in the y-direction, and we show that the prefix and suffix of

each curve—possibly under translation—remain within S and S(λ), and thus the

solution remains valid.

We prove this for the case where the top-right corner v of S ′ is below-left the

top-right corner v of S ′, i.e., v.x ≤ v.x and v.y ≤ v.y. In the sequel we will show
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that an equivalent solution (S, S) exists where the bottom-left corner of S lies at the

origin and the top-right corner of S lies at (δ∗x, δ
∗
y) as required by the claim in the

lemma. A symmetric argument exists for the other cases where v’s position relative

to c is above-left, below-right and below-left.

First, observe that v.x ≥ δ∗x, as either wr is a vertex in a prefix of some curve

and thus δ∗x ≤ v.x ≤ v.x, or wr is a vertex in a suffix and thus δ∗x ≤ v.x. A

similar argument proves that v.y ≥ δ∗y, and thus S(λ) will move to the left until

the x-coordinate of the right edge of S is δ∗x and then down under the continuous

translation to S, i.e., the y-coordinate of the top edge of S is δ∗y .

Consider the validity of the solution (S, S(λ)) as the suffix square moves leftwards.

If there are no suffix vertices on the right edge of square S(λ) then it can be translated

to the left and remain a valid solution, until such time as some suffix vertex p of

curve C lies on the right edge. Subsequently, C is translated together with S(λ), and

thus the suffix vertices of C continue to be contained in S(λ). For a prefix vertex p

of C to move outside S under the translation it must cross the left-side of S, however

this would imply that |p.x − p.x| > p.x ≥ δ∗x, contradicting the fact that δ∗x is the

maximum extent in the x-direction of all curves. The same analysis can be applied

to the translation of S(λ) in the downward direction. This shows that the continuous

family of squares S(λ) imply a family of optimal solutions (S, S(λ)) to the problem,

and in particular (S, S) is a solution.

Lemma 6.15 implies that an optimal solution of radius r∗ exists where S and S

coincide with opposite corners of R. Next, we consider the properties of such an

optimal solution, and show that r∗ is determined by two vertices from a single curve.

Recall that a pair of vertices are determining vertices if they lie on opposite sides of

one of the squares. Here, we refine the definition with the condition that the pair

both belong to the prefix or suffix of the same curve. Furthermore, denote a pair of

vertices (p, p), where p is in the prefix and p is in the suffix of the same curve, as

opposing vertices if they preclude a smaller pair of squares coincident with the same

opposing corners of R. Assuming that S coincides with the top-left corner of R and

S with the bottom-right corner, then p and p are opposing vertices if, either: (i) p

lies on the right edge of S and p lies on the left edge of S; or (ii) p lies on bottom

edge of S and p lies on the top edge of S. Symmetrical conditions exist for the cases

where S and S are coincident with the other three (ordered) pairs of corners. We

claim that the conditions in the following lemma are necessary for a solution.

Lemma 6.16. Let (S, S) be an optimal solution of radius r∗ such that S and S

are coincident with opposite corners of R, and let C ′ := {Ct | C ∈ C} be the set of

curves under translation from which (S, S) was obtained. At least one of the following

conditions must hold for some curve Ct ∈ C ′:

(i) there must be a pair of determining vertices for either S or S; or
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(ii) there must be a pair of opposing vertices for S and S.

Proof. Since (S, S) is a valid solution, then for each translated curve Ct ∈ C ′, there
must exist a partition of Ct defined by an index i such that Ct[1, i] ⊂ S and

Ct[i+ 1,m] ⊂ S.

Assume that neither of the conditions stated in the lemma hold. Then the radius

of the squares can be decreased to obtain a smaller pair of squares coincident with

the same corners of R. If no vertices from the curves in C ′ lie on the inner sides of S

and S—that is, the sides that are not collinear with sides of R then the radius can be

reduced without translating the curves in C ′. If one or more prefix (suffix) vertices of

lie on the inner sides of S (S), then Ct is translated in a direction determined in the

following way. For each such vertex p lying on a side s of its assigned square, let n⃗ be

the direction of the inner normal of s. The direction of translation is the direction of

the vector obtained by summing the normal vectors. Such a direction would allow all

the vertices lying on the sides of their respective squares to remain on the side, unless

two vertices lie on opposing sides of the same square, i.e., condition (i) holds, or they

lie on the opposing inner sides of different squares, i.e., condition (ii) holds.

Lemma 6.16 implies that the optimality of a solution will be determined by the

partition of a single curve. The minimum radius of a solution for a partition at i

of a curve Cj under translation may be computed in constant time by finding the

bounding boxes around the prefix and suffix of the curve, and the radius of the

solution can then be obtained from the candidate pairs of determining and opposing

vertices implied by the bounding boxes. Specifically, the value rji is a lower bound on

the optimal radius obtained by the partition at i of curve Cj, and can be computed

in constant time, for example, when S is below-left of S:

rji :=
1

2
min



δx (Cj[1, i]),

δx (Cj[i+ 1,m]),

(δ∗x − (minv∈C[i+1,m] v.x−maxv∈C[1,i] v.x))/2,

δy(Cj[1, i]),

δy(Cj[i+ 1,m]),

(δ∗y − (minv∈C[i+1,m] v.y −maxv∈C[1,i] v.y))/2



.

An optimal solution for C under translation where the squares coincide with a

particular pair of opposing corners of R can computed as r := maxj : Cj∈C min1≤i≤m rji ,

i.e., the minimum radius of a pair of squares covering the partition of a curve, and

then determining the largest such value over all curves. The solutions are evaluated

where S and S coincide with each of the four ordered pairs of opposite corners of R,
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and the overall solution is the smallest of these values.

We thus obtain the following result.

Theorem 6.17. Given a set of curves C as input, an optimal solution to the (1, 2)-

Center problem under translation using the discrete Fréchet distance under the L∞

metric can be computed in O(nm) time and O(nm) space.

6.6.3 (1, 2)-Center and L2 metric

For the (1, 2)-Center problem and L2 we need some more sophisticated arguments,

but again we use a similar basic approach.

We first consider the decision problem: Given a value r > 0, determine whether

there exists a segment s such that maxCi∈C ddF (s, Ci) ≤ r.

For each curve C ∈ C and for each vertex p of C, draw a disk of radius r centered

at p and denote it by D(p). Let D denote the resulting set of nm disks and let A(D)
be the arrangement of the disks in D. The combinatorial complexity of A(D) is

O(n2m2). Let A be a cell of A(D). Then, each curve C = (p1, . . . , pm) ∈ C induces a

bit vector VC of length m; the ith bit of VC is 1 if and only if D(pi) ⊇ A. Moreover,

if j is the index of the first 0 in VC , then the suffix of curve C at cell A is C[j,m].

We maintain the vectors VC as we traverse the arrangement A(D), by constructing

a binary tree TC , for each curve C, as described in the previous section. The leaves

of TC correspond to the vertices of C, and in each node we store a single bit. Here,

the bit at a leaf node corresponding to vertex pi is 1 if and only if D(pi) ⊇ A, where

A is the current cell of the arrangement. For an internal node, the bit is 1 if and

only if all the bits in the leaves of its subtree are 1. We can determine the current

suffix of C in O(logm) time, and the cost of an update operation is O(logm). We

also maintain the set P , where P is the union of the suffixes of the curves in C, and
its corresponding region X = ∩p∈PD(p). Actually, we only need to know whether X

is empty or not.

We begin by constructing the trees TC1 , . . . , TCn and initializing all bits to 0,

which takes O(mn) time. We also construct the data structures for P and X, where

initially P = C1[1,m] ∪ · · · ∪ Cn[1,m]. This takes O(nm log2(nm)) time in total.

For P we use a standard balanced search tree, and for X we use, e.g., the data

structure of Sharir [Sha97], which supports updates to X in O(log2(nm)) time. We

now traverse A(D) systematically, beginning with the unbounded cell of A(D), which
is not contained in any of the disks of D. Whenever we enter a new cell A from a

neighboring cell separated from it by an arrangement edge, then we either enter or

exit the unique disk of D whose boundary contains this edge. We thus first update

the corresponding tree TC accordingly, and redetermine the suffix of C. We now

may need to perform O(m) update operations on the data structures for P and X,

so that they correspond to the current cell. At this point, if X ̸= ∅, then we halt
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and return yes (since we know that the minimum enclosing disk of the union of

the prefixes is at most r). If, however, X = ∅, then we continue to the next cell of

A(D), unless there is no such cell in which case we return no. We conclude that the

decision problem can be solved in O(n2m3 log2(nm)) time and O(n2m2) space.

Notice that the minimum radius r∗ for which the decision version returns yes,

is determined by three of the nm curve vertices. Thus, we perform a binary search

in the (implicit) set of potential radii (whose size is O(n3m3)) in order to find r∗.

Each comparison in this search is resolved by solving the decision problem for the

appropriate potential radius. Moreover, after resolving the current comparison, the

potential radius for the next comparison can be found in O(n2m2 log2(nm)) time,

as in the early near-quadratic algorithms for the well-known 2-center problem, see,

e.g., [AS94, JK94, KS97].

The following theorem summarizes the main result of this section.

Theorem 6.18. Given a set of curves C as input, an optimal solution to the (1, 2)-

Center problem using the discrete Fréchet distance under the L2 metric can be

computed in O(n2m3 log3(nm)) time and O(n2m2) space.



Chapter 7

Simplifying Chains under the

Discrete Fréchet Distance

7.1 Introduction

Simplifying polygonal chains is a well-studied topic with many applications in a

variety of fields of research and technology. When polygonal chains are large, running

time becomes critical. A natural approach is to find a small chain which is a

good approximation of the original one. For instance, many GPS applications use

trajectories that are represented by sequences of densely sampled points, which we

want to simplify in order to perform efficient calculations. In short, given a chain A

with n vertices, we want to find a chain A′ such that A′ is close to A and |A′| << n.

Curve simplification is used to simplify the representation of rivers, roads, coastlines,

and other features when a map at large scale is produced. The simplification process

has many advantages, such as removing unnecessary cluttering due to excessive

detail, saving disk and memory space, and reducing the rendering time.

Recently, the discrete Fréchet distance has been utilized for protein backbone

comparison. Within structural biology, polygonal curve alignment and comparison is

a central problem in relation to proteins. Proteins are usually studied with RMSD

(Root Mean Square Deviation), but recently the discrete Fréchet distance was used

to align and compare protein backbones, which yielded beneficial results over RMSD

in many instances [JXZ08, WLZ11]. There may be as many as 500∼600 α-carbon

atoms along a protein backbone (which are the nodes of the chain). This makes

efficient computation a priority and is one of the reasons simplification was originally

considered.

Related work. Bereg et al. [BJW+08] were the first to study simplification problems

under the discrete Fréchet distance. They considered two such problems. In the

first, the goal is to minimize the number of vertices in the simplification, given a

bound on the distance between the original chain and its simplification, and, in

89
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the second problem, the goal is to minimize this distance, given a bound k on the

number of vertices in the simplification. They presented an O(n2)-time algorithm

for the former problem and an O(n3)-time algorithm for the latter problem, both

using dynamic programming, for the case where the vertices of the simplification are

from the original chain. (For the arbitrary vertices case, they solve the problems in

O(n log n) time and in O(kn log n log(n/k)) time, respectively.)

Agarwal et al. [AHMW05] considered the problem of approximating an ε-

simplification. In this problem a polygonal curve A and an error criterion are

given, and we want to find another polygonal curve A′ whose vertices are a subset of

the vertices of A, with minimal number of vertices, such that the error between A

and A′ is below a certain threshold. They considered two different error measures

- Hausdorff and Fréchet error measures. For both error criteria, they presented

near-linear time approximation algorithms. The Fréchet error measure is not similar

to the Fréchet distance, and will be reviewed in more detail later on.

Driemel and Har-Peled [DH13] showed how to preprocess a polygonal curve in

near-linear time and space, such that, given an integer k > 0, one can compute a

simplification in O(k) time which has 2k − 1 vertices of the original curve and is

optimal up to a constant factor (w.r.t. the continuous Fréchet distance), compared

to any curve consisting of k arbitrary vertices.

Our Results. In Section 7.3 we discuss optimal simplification problems considered

by Bereg et al. [BJW+08]. We suggest and solve more general versions of these

problems. In particular, we improve the result of Bereg et al. [BJW+08] mentioned

above for the problem of finding the best simplification of a given length under the

discrete Fréchet distance, by presenting a more general O(n2 log n)-time algorithm

(rather than an O(n3)-time algorithm).

In Section 7.4 we discuss approximation algorithms for simplification. First we

adapt the techniques and algorithms presented by Driemel and Har-Peled [DH13] to

the discrete Fréchet distance, with slightly improved approximation factors. Then

we discuss the Fréchet error measure as presented in [AHMW05].

7.2 Preliminaries

In the previous chapter we used the notion of curves alignment to define DFD.

Here (and in the following chapter), again, we prefer to use yet another equivalent

definition, following [God91], [BJW+08] and [DH13].

Paired walk. Given two chains A = (a1, . . . , an) and B = (b1, . . . , bm):

A paired walk along A and B is a sequence of pairs W = {(Ai, Bi)}ki=1, such that

A1, ..., Ak and B1, ..., Bk partition A and B, respectively, into (disjoint) non-empty
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sub-chains, and for any i it holds that |Ai| = 1 or |Bi| = 1. The cost of a paired

walk W along A and B is

dWdF (A,B) = max
i

max
(a,b)∈Ai×Bi

d(a, b).

The discrete Fréchet distance from A to B is ddF (A,B) = min
W

dWdF (A,B).

Simplification. Given a chain P = (p1, . . . , pn):

A simplification of P is a chain P ′ = (px1 , . . . , pxk
) of points from P , where

x1 < x2 < · · · < xk. An arbitrary simplification of P is a chain P ′ with |P ′| ≤ |P |.
The error of a simplification (arbitrary or non-arbitrary) P ′ of P is ddF (P, P

′).

Spine. Given a chain Z = (z1, . . . , zn) and a segment pq:

The spine of Z denoted by spine(Z) is the segment z1zn. A spine chain of Z

is a chain zx1 , . . . , zxk
of points from Z, where 1 = x1 < x2 < · · · < xk = n.

A split point of Z with respect to pq is a point zi for which the cost of the

paired walk {(p, Z⟨z1, zi⟩), (q, Z⟨zi+1, zn⟩)} of Z and pq is ddF (Z, pq).

7.3 The simplification problem

As mentioned in the introduction, Bereg et al. [BJW+08] were the firsts to study

the problem of simplifying 3D polygonal chains under the discrete Fréchet distance.

We present a more general definition of the problem:

Problem 7.1.

Instance: Given a pair of polygonal chains A and B of lengths m and n, respectively,

an integer k, and a real number δ > 0.

Problem: Does there exist a chain A′ of at most k vertices, such that the vertices

of A′ are from A and ddF (A
′, B) ≤ δ?

This problem induces two optimization problems (as in [BJW+08]), depending

on whether we wish to optimize the length of A′ or the distance between A′ and B.

Below we solve both of them, beginning with the former problem.

7.3.1 Minimizing k given δ

In this problem, we wish to minimize the length of A′ without exceeding the allowed

error bound.

Problem 7.2. Given two chains A = (a1, . . . , am) and B = (b1, . . . , bn) and an error

bound δ > 0, find a simplification A′ of A of minimum length, such that the vertices

of A′ are from A and ddF (A
′, B) ≤ δ.
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For B = A, Bereg et al. [BJW+08] presented an O(n2)-time dynamic programming

algorithm. (For the case where the vertices of A′ are not necessarily from A, they

presented an O(n log n)-time greedy algorithm.)

Theorem 7.3. Problem 7.2 can be solved in O(mn) time and space.

Proof. We present an O(mn)-time dynamic programming algorithm. The algorithm

finds the length of an optimal simplification; the actual simplification is constructed

by backtracking the algorithm’s actions.

Define two m × n tables, O and X. The cell O[i, j] will store the length of

a minimum-length simplification Ai of A[i . . .m] that begins at ai and such that

ddF (A
i, B[j . . . n]) ≤ δ. The algorithm will return the value min1≤i≤m O[i, 1].

We use the table X to assist us in the computation of O. More precisely, we

define:

X[i, j] = min
i′≥i

O[i′, j] .

Notice that X[i, j] is simply the minimum of X[i+ 1, j] and O[i, j].

We compute O[−,−] and X[−,−] simultaneously, where the outer for-loop is

governed by (decreasing) i and the inner for-loop by (decreasing) j. First, notice

that if d(ai, bj) > δ, then there is no simplification fulfilling the required conditions,

so we set O[i, j] =∞. Second, the entries (in both tables) where i = m or j = n can

be handled easily. In general, if d(ai, bj) ≤ δ, we set

O[i, j] = min{O[i, j + 1], X[i+ 1, j + 1] + 1} .

We now justify this setting. Let Ai be a minimum-length simplification of A[i . . . n]

that begins at ai and such that ddF (A
i, B[j . . . n]) ≤ δ. The initial configuration of

the joint walk along Ai and B[j . . . n] is (ai, bj). The next configuration is either

(ai, bj+1), (ai′ , bj) for some i′ ≥ i + 1, or (ai′ , bj+1) for some i′ ≥ i + 1. However,

clearly X[i+ 1, j + 1] ≤ X[i+ 1, j], so we may disregard the middle option.

7.3.2 Minimizing δ given k

In this problem, we wish to minimize the discrete Fréchet distance between A′ and

B, without exceeding the allowed length.

Problem 7.4. Given two chains A = (a1, . . . , am) and B = (b1, . . . , bn) and a positive

integer k, find a simplification A′ of A of length at most k, such that the vertices of

A′ are from A and ddF (A
′, B) is minimized.

For B = A, Bereg et al. [BJW+08] presented an O(n3)-time dynamic program-

ming algorithm. (For the case where the vertices of A′ are not necessarily from

A, they presented an O(kn log n log(n/k))-time greedy algorithm.) We give an
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O(mn log (mn))-time algorithm for our problem, which yields an O(n2 log n)-time

algorithm for B = A, thus significantly improving the result of Bereg et al.

Theorem 7.5. Problem 7.4 can be solved in O(mn log (mn)) time and O(mn) space.

Proof. Set D = {d(a, b)|a ∈ A, b ∈ B}. Then, clearly, ddF (A
′, B) ∈ D, for any

simplification A′ of A. Thus, we can perform a binary search over D for an optimal

simplification of length at most k. Given δ ∈ D, we apply the algorithm for

Problem 7.2 to find (in O(mn) time) a simplification A′ of A of minimum length

such that ddF (A
′, B) ≤ δ. Now, if |A′| > k, then we proceed to try a larger bound,

and if |A′| ≤ k, then we proceed to try a smaller bound. After O(log (mn)) iterations

we reach the optimal bound.

Remark 7.6. In Problem 7.2 we could require a simplification of maximum length

instead of minimum length. In this case, the problem bacomes a discrete one-sided

version of the partial Fréchet similarity problem, mentioned in the introduction of

Chapter 2. The goal is to match a maximal portion of the points from A to B, while

ensuring a certain error bound. This problem aims at situations where the extent

of a pre-required similarity is known (and given by δ), and we wish to know how

much (and which parts) of A are similar to B in this extent. This problem can be

solved in a similar manner using the same dynamic programming algorithm. Also,

in Problem 7.4 we could require at least instead of at most k vertices. In this case,

again this problem relates to the partial Fréchet similarity problem. However, now

the extent of similarity is not given, but at least k vertices should be matched. This

aims to a case where B is a library curve and A is a sequence of densely sampled

points that should match B, but might contain outliers. We wish to filter the outliers

from A (non-outliers might be filtered too) while keeping it close to B.

7.4 Universal vertex permutation for curve simplification

In [DH13], Driemel and Har-Peled presented a collection of data structures for Fréchet

distance queries. They used it in order to give an approximation algorithm for the

Fréchet distance with shortcuts problem (see Chapter 2), and also for obtaining

a universal approximate simplification. This is done by computing a permutation

of the vertices of the input curve, in near-linear time and space, such that the

approximate simplification of size k is the subcurve defined by the first k vertices in

this permutation. We follow their results and apply their techniques to the discrete

Fréchet distance, with a slight improvement of the approximation factor.

7.4.1 A segment query to the entire curve

In this section we describe a data-structure that preprocesses a chain Z = (z1, ..., zn),

and given a query segment pq returns a (1− ε)-approximation of the discrete Fréchet
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distance ddF (Z, pq), i.e., a value ∆ such that (1− ε)ddF (Z, pq) ≤ ∆ ≤ ddF (Z, pq).

The data structure

We need the following lemmas:

Lemma 7.7. [Dri13]Given a point u ∈ Rd,a parameter 0 < ε ≤ 1 and an interval

[α, β] ⊆ R, one can compute in O(ε−d log(β/α)) time and space an exponential grid

of points G(u), such that for any point p ∈ Rd with ∥p− u∥ ∈ [α, β], one can compute

in constant time a grid point p′ ∈ G(u), with ∥p− p′∥ ≤ (ε/2) ∥p− u∥.

Lemma 7.8. Let pq be a segment and Z a chain, then

ddF (pq, Z) ≥ ddF (spine(Z), Z)/2.

Proof. Let spine(Z) = uv. Clearly,

ddF (pq, Z) ≥ max(∥p− u∥ , ∥q − v∥) = ddF (spine(Z), pq).

By the triangle inequality, we get

ddF (spine(Z), Z) ≤ ddF (spine(Z), pq) + ddF (pq, Z) ≤ 2ddF (pq, Z).

Preprocessing. Let uv be the spine of Z, and L = ddF (Z, uv). We construct two

exponential grids G(u) and G(v) of points around u and v, both with the range

[εL/4, L/ε] as described in the lemma. We also add u to G(u) and v to G(v). For

every pair of points ⟨p′, q′ >∈ G(u)×G(v) we compute D[p′, q′] = ddF (Z, p
′q′). The

preprocessing time is O(nε−2d log2(1/ε)), as we have O(ε−d log(1/ε)) points in each

grid, and computing the discrete Fréchet distance of a curve to a segment takes O(n)

time. The space required is O(ε−2d log2(1/ε)).

Answering a query. Given a query segment pq, we want to return an approximation

to the distance ddF (Z, pq).

We compute the distance r = max{∥p− u∥ , ∥q − v∥}.
If r ≤ εL/4, we return L− r.

If r ≥ L/ε we return r.

Otherwise, w.l.o.g r = ∥p− u∥ so by Lemma 7.7 we can find p′ ∈ G(u) such that

∥p− p′∥ ≤ (ε/2) ∥p− u∥ = (ε/2)r. If ∥q − v∥ ≥ εL/4, find a grid point q′ ∈ G(v)

such that ∥q − q′∥ ≤ (ε/2) ∥q − v∥ ≤ (ε/2)r. Else, if ∥q − v∥ ≤ εL/4, set q′ = v.

Finally, return D[p′, q′]−max{∥p− p′∥ , ∥q − q′∥}.
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Analysis

Lemma 7.9. Given a chain Z with n points in Rd and 0 < ε < 1, one can

build a data structure in O(nε−2d log2(1/ε)) time and O(ε−2d log2(1/ε)) space, such

that given a query segment pq, one can return in O(1) time a value ∆ such that

(1− ε)ddF (Z, pq) ≤ ∆ ≤ ddF (Z, pq).

Proof. As described above, the preprocessing of the data structure takesO(nε−2d log2(1/ε))

time and the space required is O(ε−2d log2(1/ε)). Given a segment query pq, we

can compute r = max{∥p− u∥ , ∥q − v∥} = ddF (pq, uv) in O(1) time. Let ∆ be the

returned value, we show that (1− ε)ddF (Z, pq) ≤ ∆ ≤ ddF (Z, pq) :

If r ≤ εL/4, we return ∆ = L− r. By the triangle inequality,

∆ = L− r = ddF (Z, uv)− ddF (pq, uv) ≤ ddF (Z, pq).

ddF (Z, pq) ≤ L+ r ≤ L+ εL/4 = L+ εL− εL/4− εL/2 ≤

≤ L+ εL− r − 2r ≤ L+ εL− r − εr =

= (1 + ε)(L− r) = (1 + ε)∆ ≤ ∆/(1− ε).

If r ≥ L/ε, we return ∆ = r. The values ∥p− u∥ , ∥q − v∥ participate in comput-

ing ddF (Z, pq) , so we have ∆ = r ≤ ddF (Z, pq). By the triangle inequality

ddF (Z, pq) ≤ L+ r ≤ εr + r = (1 + ε)r = (1 + ε)∆ ≤ ∆/(1− ε).

Otherwise, we return

∆ = D[p′, q′]−max{∥p− p′∥ , ∥q − q′∥} = ddF (Z, p
′q′)− ddF (pq, p

′q′).

First, by the triangle inequality we have

∆ = ddF (Z, p
′q′)− ddF (pq, p

′q′) ≤ ddF (Z, pq),

and also

ddF (Z, pq) ≤ ddF (Z, p
′q′) + ddF (pq, p

′q′) ≤ ∆+ 2ddF (pq, p
′q′). (7.1)

Again, w.l.o.g we assume r = ∥p− u∥ and we have two cases:

1. If ∥q − v∥ ≥ εL/4, then q′ is also a grid point and

ddF (pq, p
′q′) ≤ (ε/2)ddF (pq, uv) ≤ (ε/2)ddF (Z, pq).
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From Equation (7.1):

ddF (Z, pq) ≤ ∆+ 2(ε/2)ddF (Z, pq) = ∆ + εddF (Z, pq),

and we get that ∆ ≥ (1− ε)ddF (Z, pq).

2. Else, ∥q − v∥ ≤ εL/4, then q′ = v and

ddF (pq, p
′v) = max{∥p− p′∥ , ∥q − v∥}

≤ max{(ε/2) ∥p− u∥ , εL/4}

= (ε/2)max{∥p− u∥ , L/2}.

By Lemma 7.8 we have L/2 = ddF (Z, uv)/2 ≤ ddF (Z, pq), and from Equa-

tion (7.1):

ddF (Z, pq) ≤ ∆+ 2(ε/2)max{∥p− u∥ , L/2} ≤ ∆+ εddF (Z, pq),

or ∆ ≥ (1− ε)ddF (Z, pq).

7.4.2 A segment query to a subcurve

In this section we describe a data-structure that preprocesses a sequence Z of n

points, and given a query segment pq and a subcurve Z⟨u, v⟩ returns a (1 − ε)

approximation of the Discrete Fréchet distance ddF (Z⟨u, v⟩, pq), i.e., a value ∆ such

that

(1− ε)ddF (Z⟨u, v⟩, pq) ≤ ∆ ≤ ddF (Z⟨u, v⟩, pq).

The data structure

First notice that the Discrete Fréchet distance of a chain Z to a segment pq is actualy

a partition of Z into two subchains, Z1 and Z2, such that Z = Z1Z2, and

ddF (Z, pq) = max{max
z∈Z1

∥z − p∥ , max
z∈Z2

∥z − q∥}.

The last point of Z1 is a split point of Z with respect to pq. We need the following

lemma:

Lemma 7.10. Let Z be a chain, and pq a segment. Let Z1, ..., Zk be a partition of

Z into k subchains such that Z = Z1Z2...Zk. Let

δi = max{max
j<i

ddF (Zj, p), ddF (Zi, pq), max
j>i

ddF (Zj, q)},
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1 ≤ i ≤ k, and set α = min
i
δi. Let

δ
′

i = max{max
j≤i

ddF (Zj, p), max
j>i

ddF (Zj, q)},

1 ≤ i ≤ k, and set β = min
i
δ
′
i. Then ddF (Z, pq) = min

i
{α, β}.

Proof. Let δ = ddF (Z, pq). First notice that ddF (Zj, p) = max
z∈Zj

∥z − p∥, and thus

max
j<i

ddF (Zj, p) = max
z∈Zj , j<i

∥z − p∥. Symmetrically, max
j>i

ddF (Zj, p) = max
z∈Zj , j>i

∥z − p∥.
Let i be the index such that δi = α. The split point of Zi with respect to pq defines

a partition of the entire sequence Z into two subchains, and α is the weight of a

Fréchet walk of Z and pq with respect to that split point. A similar claim is true for

δ
′
i = β and the last point of Zi as the split point. Thus we have α ≥ δ and β ≥ δ.

Now let z ∈ Z be the split vertex of Z with respect to pq, and let Zl be the subchain

containing z. If z is not the end point of Zl, then we have

δ = max{max
j<l

ddF (Zj, p), ddF (Zl, pq), max
j>l

ddF (Zj, q)} = δl ≥ α,

and if z is the end point of Zl, then we have

δ = max{max
j≤l

ddF (Zj, p), max
j>l

ddF (Zj, q)} = δ
′

l ≥ β.

We conclude that δ = min
i
{α, β}.

Preprocessing. Similarly to the construction by Driemel and Har-Peled, we build

a balanced binary tree T on the points of Z. Every node v of T corresponds to a

subchain of Z, denoted by seq(v). For every node v we build the data structure

ES(v) of Lemma 7.9.

Answering a query. Given a query segment pq, and two points u, v on Z, we

want to return an approximation to the distance ddF (Z⟨u, v⟩, pq). First, compute

k = O(log n) nodes v1, ..., vk of T , such that Z⟨u, v⟩ = seq(v1)seq(v2)...seq(vk). Let

ϕpq
i be the (1− ε)-approximation of ddF (seq(vi), pq) computed by ES(vi). Let ϕ

p
i and

ϕq
i be the (1 − ε)-approximation of ddF (seq(vi), p) and ddF (seq(vi), q) respectively,

also computed by ES(vi). Now we can compute for every i in increasing order the

value max
j<i

ϕp
j , and in decreasing order the value max

j>i
ϕq
j , in O(log n) time. Finally, we

return

min{min
i
{max{max

j<i
ϕp
i ,max

j>i
ϕq
i , ϕ

pq
i }},min

i
{max{max

j≤i
ϕp
i ,max

j>i
ϕq
i}}}

as a (1− ε)-approximation of the distance ddF (Z⟨u, v⟩, pq).
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Analysis.

Lemma 7.11. Given a polygonal curve Z with n vertices in Rd and 0 < ε < 1, one

can build a data structure in O(n log nε−2d log2(1/ε)) time and O(nε−2d log2(1/ε))

space, such that given a query segment and two points u, v on Z, one can (1 −
ε)−approximate ddF (Z⟨u, v⟩, pq) in O(log n) time.

Proof. As described above, the preprocessing of the data structure takesO(nε−2d log2(1/ε))

time in each level of the tree T , and O(n log nε−2d log2(1/ε)) time overall. The space

required is O(ε−2d log2(1/ε)) for each node, and O(nε−2d log2(1/ε)) for the entire tree.

Given a segment query pq and two points u, v on Z, we can compute k = O(log n)

nodes v1, ..., vk of T , and return

min{min
i
{max{max

j<i
ϕp
j , ϕ

pq
i ,max

j>i
ϕq
j}},min

i
{max{max

j≤i
ϕp
j ,max

j>i
ϕq
j}}}

in O(log n) time, as described above.

Let ∆ be the returned value, we show that (1 − ε)ddF (Z⟨u, v⟩, pq) ≤ ∆ ≤
ddF (Z⟨u, v⟩, pq):

We have by Lemma 7.9:

(1− ε)ddF (seq(vi), p) ≤ ϕp
i ≤ ddF (seq(vi), p)

(1− ε)ddF (seq(vi), q) ≤ ϕq
i ≤ ddF (seq(vi), q)

(1− ε)ddF (seq(vi), pq) ≤ ϕpq
i ≤ ddF (seq(vi), pq).

Using Lemma 7.10, we get that ∆ ≤ ddF (Z⟨u, v⟩, pq) and ∆ ≥ (1−ε)ddF (Z⟨u, v⟩, pq),
by replacing ϕp

j , ϕ
q
j and ϕpq

i by ddF (seq(vj), p), ddF (seq(vj), q) and ddF (seq(vi), pq),

respectively.

7.4.3 Universal simplification

Given a sequence Z, our goal is to find a permutation π(Z) of the points of Z, such

that for any k, π(Z)⟨1, k⟩ is a good approximation to the optimal simplification of

Z with k points (not necessarily from Z).

We build a new data-structure using the one described above.

Construction of the permutation. We use the same idea of the algorithm shown

by Dreimel and Har-Peled. The idea is to compute for each point of the sequence the

error caused by removing it from the sequence, and then remove the point with the

lowest error. Then, update the values of its neighbours with respect to the remaining

points, and continue until all the points (except the two endpoints) are removed.

Let Z =< z1, ..., zn > be the sequence of n points, given by a doubly-linked list.

We build for Z the data structure of Lemma 7.11 with ε = 1
10
.



7.4. Universal vertex permutation for curve simplification 99

For each internal point z of Z, let z+ and z− be its successor and predecessor

on Z respectively, and let ϕ(z) be a (9/10)-approximation of ddF (Z⟨z−, z+⟩, z−z+) .
Insert z with weight ϕ(z) to a minimum heap H. Finally, insert z1 and zn to H with

weight +∞.

Repeat until H is empty: extract the point z with minimum ϕ(z) from H. Let

z+ and z− be its successor and predecessor on ZH respectively, where ZH is a spine

sequence of Z containing only the points of H. Compute the new weights for z+ and

z− (their successor and predecessor are with respect to ZH after removing z from H,

but the approximated distance is to a subchain of the original sequence Z).

Reverse the order of the points extracted from the heap, and return the permuta-

tion π= < v1, v2, ..., vn > (v1 and v2 are the endpoints of Z).

Now given a parameter k, we want to find the spine sequence Zπk
, where πk

is the set of the first k points of π. We store O(log n) spine sequences of Z: for

i = 1... ⌊log n⌋, we compute Zπ2i
by removing from Zπ2i+1

all the points that are not

in π2i . This construction can be done in linear time and space. Given a query k, we

copy the sequence Zπ2i
such that 2i ≥ k ≥ 2i−1, and remove all the points that are

not in πk. This can be done in O(k) time.

Analysis. We need a few lemmas:

Lemma 7.12. Let Z be a chain, and p, q two points from Z. Then ddF (spine(Z), Z) ≥
ddF (pq, Z⟨p, q⟩)/2.

Proof. Denote by u and w the end points of Z (spine(Z) = uw). Let δ = ddF (uw,Z),

and let B(u, δ), B(w, δ) the disks with radius δ around u and w respectively. Observe

that the union of the disks covers all the points of Z. Let v be the last vertex that is

matched to u, and v′ the first vertex that is matched to w in a Fréchet walk with

weight δ. We have two cases to consider:

1. If p and q are both between u and v, then B(p, 2δ) covers the entire disk B(u, δ)

and thus the entire subchain Z⟨u, v⟩ that includes Z⟨p, q⟩. We can conclude

that ddF (pq, Z⟨p, q⟩) ≤ 2δ. Symmetrically, the same argument holds when p

and q are both between v′ and w.

2. If p is between u and v and q is between v′ and w, then B(p, 2δ) covers the

disk B(u, δ) that covers the entire subchain Z⟨u, v⟩, and B(q, 2δ) is covering

Z⟨v′, w⟩. The Fréchet walk that matches all the vertices of Z⟨p, v⟩ to p and all

the vertices of Z⟨v′, q > to q gives us ddF (pq, Z⟨p, q⟩) ≤ 2δ.

Let π= < v1, v2, ..., vn > be the permutation returned by the preprocessing

algorithm, πk be the first k vertices of π, and Zπk
=< u1, ..., uk > be the first k
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vertices of π by their ordering along Z. Denote by ϕ(vi) the weight of vi at the time

of extraction.

Lemma 7.13. Given a parameter k, dFD(Z,Zπk
) ≤ max

1≤i<k
ddF (Z⟨ui, ui+1⟩, uiui+1).

Proof. Let zi be the split vertex of ddF (Z⟨ui, ui+1⟩, uiui+1) for every 1 ≤ i < k.

Consider the walk W = {(u1, Z⟨u1, z1⟩)}∪{(ui, Z⟨z+i−1, zi⟩)}k−1
i=2 ∪{(uk, Z⟨z+k−1, uk⟩)}

(See Figure 7.1). Clearly, ϕ(W ) = max
1≤i<k

ddF (Z⟨ui, ui+1⟩, uiui+1). It also holds that

dFD(Z,ZπK
) ≤ ϕ(W ) because W is some Fréchet walk of Z and Zπk

.

u1

u2

u3

u4

u5z2

z3

z4

z1

Figure 7.1: The walk W that was contracted using the split points zi obtained from
computing the distance ddF (Z⟨ui, ui+1⟩, uiui+1) for every 1 ≤ i < k.

Lemma 7.14. Consider the permutation π. Then, for every 1 ≤ i ≤ n and i ≤ j ≤ n,

ϕ(vj) ≤ 2 · 10
9
ϕ(vi).

Proof. Let ϕj(vi) be the weight of vi at the time of extracting vj. Clearly, we

have ϕ(vj) ≤ ϕj(vi) because the algorithm chooses to extract the point with the

minimum weight. Notice that the weight of vi at the time of extraction, ϕ(vi), is a
9
10
-approximation to ddF (Z⟨ui, wi⟩, uiwi) for some points ui, wi, and the weight of vi

at the time of extracting vj , ϕj(vi), is a
9
10
-approximation to ddF (Z⟨uj, wj⟩, ujwj) for

some points uj, wj, such that Z⟨uj, wj⟩ is a subchain of Z⟨ui, wi⟩. The reason for

that is that the subchain that determines the weight is always expanding, because

we only remove possible end points. By Lemma 7.12 we get

ϕj(vi) ≤ ddF (Z⟨uj, wj⟩, ujwj) ≤ 2ddF (Z⟨ui, wi⟩, uiwi) ≤ 2 · 10
9
ϕ(vi)

Lemma 7.15. For any 3 ≤ i ≤ n− 1, ddF (Z,Zπi
) ≤ 2 ·

(
10
9

)2
ϕ(vi+1).

Proof. By Lemma 7.13 we have dFD(Z,Zπi
) ≤ max

1≤j<i
ddF (Z⟨uj, uj+1⟩, ujuj+1). If uj+1

is the successor of uj on Z, then ddF (Z⟨uj, uj+1⟩, ujuj+1) = 0 . Else, there must be

a point from π\πi =< vi+1, ..., vn > that is between uj and uj+1. Let vk be such
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a point with minimal index, meaning it was the last such point to be extracted,

then in the time of its extraction it holds that ddF (Z⟨uj, uj+1⟩, ujuj+1) ≤ 10
9
ϕ(vk).

Now we have max
1≤j<i

ddF (Z⟨uj, uj+1⟩, ujuj+1) ≤ 10
9

max
i+1≤j≤n

ϕ(vj), and by Lemma 7.14

ddF (Z,Zπi
) ≤ 10

9
max

i+1≤j≤n
ϕ(vj) ≤ 2 ·

(
10
9

)2
ϕ(vi+1).

Lemma 7.16. Given a parameter 2 ≤ k ≤ n
2
− 1, let Yk be a sequence with k

points (not necessarily from Z) and with the smallest Fréchet distance from Z. Then

ddF (Z, Yk) ≥ ϕ(vK+1)/2, where K = 2k − 1.

Proof. Let Yk = (w1, ..., wk) be a sequence with the smallest discrete Fréchet distance

from Z. Let δ = ddF (Z, Yk), and W = {(Zi, Y i)} a Fréchet walk of Z and Yk with

weight δ. W.l.o.g, we can assume that |Y i| = 1 for all i, otherwise, we can build such

a sequence with k points and distance δ (See Remark 7.17). Now we can declare a

matching function f :

f(wi) =


zi ∈ Zi , 2 ≤ i ≤ k − 1

z1 , i = 1

zn , i = k

where zi is some representative point from Zi (see Figure 7.2). Denote the image of

f by f(Yk). The points of f(Yk) partition Z into k−1 subchains. There are 2k−1 >

2(k− 1) points in πK , so by the pigeon hole principle there must be three consecutive

points ui, ui+1, ui+2 of ZπK
between two consecutive points f(wj) and f(wj+1) (not

including f(wj+1), see Figure 7.3). We have Z⟨ui, ui+2⟩ ⊆ Z⟨f(wj), f(wj+1)⟩, so by

Lemma 7.8:

ddF (Z, Yk) ≥ ddF (Z⟨f(wj), f(wj+1)⟩, wjwj+1)

≥ min


ddF (Z⟨ui, ui+2⟩, wiwi+1),

ddF (Z⟨ui, ui+2⟩, wi),

ddF (Z⟨ui, ui+2⟩, wi+1)

≥ ddF (Z⟨ui, ui+2⟩, uiui+2)/2

When vK+1 was extracted, the three points ui, ui+1, ui+2 were still in H, thus the

weight of ui+1 at that time was a 9
10
-approximation to d(Z⟨ui, ui+2⟩, uiui+2), resulting

ddF (Z⟨ui, ui+2⟩, uiui+2)/2 ≥ ϕK+1(ui+1)/2

≥ ϕK+1(vK+1)/2 = ϕ(vK+1)/2

as the algorithm extract the vertex with minimum weight in each step.
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Remark 7.17. Let δ = ddF (Z, Yk), and W = {(Zi, Y i)} a Fréchet walk of Z and Yk

with weight δ. Assume there exists some Y i with |Y i| > 1 (and |Zi| = 1). Remove

from Yk (and Y i) the last point of Y i. Now ϕ(W ) ≤ δ. We have k ≤ n, and thus we

can find a pair (Zj, Y j) with |Y j| = 1 and |Zj| > 1. Add the first point z of Zj to

Yk, remove it from Zj, and add a new pair ({z}, {z}) to W . Now Yk has exactly k

points, and W is a Fréchet walk of Z and Yk with ϕ(W ) ≤ δ. Continue this process

until for any i, |Y i| = 1.

Figure 7.2: The function f . The black points are the points of Yk and the purple crosses
are the image of f .

wj
wj+1

f(wj)
f(wj+1)

ui

ui+1

ui+2

Figure 7.3: Three consecutive points ui, ui+1, ui+2 of ZπK between two consecutive points
f(wj), f(wj+1) of f(Yk).

Theorem 7.18. Given a chain Z with n points, we can preprocess it using O(n)

space in O(n log2 n) time, such that given a parameter k ∈ N, we can output in O(k)

time a (2k − 1)-spine sequence Z ′ of Z and a value δ such that

1. ddF (Z, Yk) ≥ 1
2
δ, and

2. 2 ·
(
10
9

)2
δ ≥ ddF (Z,Z

′)

where Yk is a sequence with k points and with the smallest Discrete Fréchet

distance to Z. The output Z ′ is a factor 5 approximation to Yk.
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Proof. We use the algorithm described above to obtain a spine sequence Z ′ = ZVK

for K = 2k − 1, and the value δ = ϕ(vK+1). Indeed,

ddF (Z,Z
′) ≤ 2 ·

(
10

9

)2

δ ≤ 5

2
δ ≤ 5ddF (Z, Yk)
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Chapter 8

The Chain Pair Simplification

Problem

8.1 Introduction

When polygonal chains are large, it is difficult to efficiently compute and visualize the

structural resemblance between them. Simplifying two aligned chains independently

does not necessarily preserve the resemblance between the chains; see Figure 8.1.

Thus, the following question arises: Is it possible to simplify both chains in a way

that will retain the resemblance between them?

(a) Simplifying the chains sepa-
rately does not necessarily preserve
the resemblance between them.

(b) A simplification of the chains
that preserves their resemblance.

Figure 8.1: Separate simplification vs. simultaneous simplification. The simplification
was bounded to 4 vertices chosen from the chain (marked in white). The unit disks are
illustrates the Fréchet distance between the right simplifications to their corresponding
right chains, and their radius is larger in (b).

This question in the context of protein backbone comparison has led Bereg et

al. [BJW+08] to pose the Chain Pair Simplification problem (CPS). In this problem,

the goal is to simplify both chains simultaneously, so that the discrete Fréchet distance

between the resulting simplifications is bounded. More precisely, given two chains A

105
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and B of lengths m and n, respectively, an integer k and three real numbers δ1,δ2,δ3,

one needs to find two chains A′,B′ with vertices from A,B, respectively, each of

length at most k, such that d1(A,A
′) ≤ δ1, d2(B,B′) ≤ δ2, ddF (A

′, B′) ≤ δ3 (d1 and

d2 can be any similarity measures and ddF is the discrete Fréchet distance). When

the chains are simplified using the Hausdorff distance, i.e., d1, d2 is the Hausdorff

distance (CPS-2H), the problem becomes NP-complete [BJW+08]. However, the

complexity of the version in which d1, d2 is the discrete Fréchet distance (CPS-3F)

has been open since 2008.

Related work. As mentioned earlier, simplification under the discrete Fréchet

distance was first addressed in 2008 when the Chain Pair Simplification (CPS)

problem was proposed by Bereg et al. [BJW+08]. They proved that CPS-2H is

NP-complete, and conjectured that so is CPS-3F. Wylie et al. [WLZ11] gave a

heuristic algorithm for CPS-3F, using a greedy method with backtracking, and based

on the assumption that the (Euclidean) distance between adjacent α-carbon atoms

in a protein backbone is almost fixed. Later, Wylie and Zhu [WZ13] presented an

approximation algorithm with approximation ratio 2 for the optimization version

of CPS-3F. Their algorithm actually solves the optimization version of a related

problem called CPS-3F+, it uses dynamic programming and its running time is

between O(mn) and O(m2n2) depending on the input simplification parameters.

The discrete Fréchet with shortcuts problem (studied in Chapter 2) can be

interpreted as a special cases of CPS-3F. Taking shortcuts on both of the chains can

be interpreted as simplifying both of the chains while preserving the resemblance

between them. Unlike CPS-3F, the difference between an original chain and its

simplification (in the two-sided variant) can be big, since the sole goal is to minimize

the discrete Fréchet distance between the two simplified chains. (For this reason, in the

shortcuts problem we do not allow both the man and the dog to move simultaneously,

since, otherwise, they would both jump directly to their final points.) Moreover, the

length of a simplification is only bounded by the length of the corresponding chain.

Our results. In Section 8.3 we introduce the weighted chain pair simplification prob-

lem and prove that weighted CPS-3F is weakly NP-complete. Then, in Section 8.4,

we resolve the question concerning the complexity of CPS-3F by proving that it is

polynomially solvable, contrary to what was believed. We do this by presenting a

polynomial-time algorithm for the corresponding optimization problem. We actually

prove a stronger statement, implying, for example, that if weights are assigned

to the vertices of only one of the chains, then the problem remains polynomially

solvable. Since the time complexity of our algorithm is impractical for our motivating

biological application, we devise a sophisticated O(m2n2min{m,n})-time dynamic

programming algorithm for the minimization problem of CPS-3F. Besides being
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interesting from a theoretical point of view, only after developing (and implementing)

this algorithm, were we able to apply the CPS-3F minimization problem to datasets

from the Protein Data Bank (PDB), see [FFK+15]. Finally, in this section we also

consider the 1-sided version of CPS under DFD. We present simpler and more efficient

algorithms for these problems.

We also consider, for the first time, the CPS problem where the vertices of

the simplifications A′, B′ may be arbitrary points, Steiner points, i.e., they are not

necessarily from A,B, respectively. Since this problem is more general, we call it

General CPS, or GCPS for short.

In Section 8.5, we show that GCPS-3F is polynomially solvable by presenting

a (relatively) efficient polynomial-time algorithm for GCPS, or more precisely, for

its corresponding optimization problem. As a first step towards devising such an

algorithm, we had to characterize the structure of a solution to the problem. This was

quite difficult, since on the one hand, we have full freedom in determining the vertices

of the simplifications, but, on the other hand, the definition of the problem induces

an implicit dependency between the two simplifications. The second challenge in

devising such an algorithm, is to reduce its time complexity (which is unavoidably

high), by making some non-trivial observations on the combinatorial complexity of

an arrangement of complex objects that arises, and by applying some sophisticated

tricks. Since the time complexity of our algorithm is still rather high, it makes

sense to resort to more realistic approximation algorithms, therefore we give an

O(m+n)4-time 2-approximation algorithm for the problem. In addition, we consider

the 1-sided version of GCPS.

Finally, in Section 8.6 we investigate GCPS-2H, showing that it is NP-complete

and presenting an approximation algorithm for the problem.

8.2 Preliminaries

A formal definition of the discrete Fréchet distance was given in Section 1.1, and

additional equivalent definitions were used in Sections 2.2, 5.2 and 7.2. In this

chapter we refer to the definition from Section 7.2.

Let A = (a1, . . . , an) and B = (b1, . . . , bm) be two sequences of points in Rd. We

denote by d(a, b) the distance between two points a, b ∈ Rd. For 1 ≤ i ≤ j ≤ n, we

denote by A[i, j] the subchain ai, ai+1, . . . , aj of A.

A Fréchet walk along A and B is a paired walk W along A and B for which

dWdF (A,B) = ddF (A,B).

A δ-simplification of A w.r.t. distance d1, is a sequence of points A′ =

(a′1, . . . , a
′
k), such that k ≤ n and d1(A,A

′) ≤ δ. The points of A′ can be arbitrary

(the general case), or a subset of the points in A appearing in the same order as in

A, i.e., A′ = (ai1 , . . . , aik) and i1 ≤ · · · ≤ ik (the restricted case).
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The different versions of the chain pair simplification (CPS) problem are formally

defined as follows.

Problem 8.1 ((General) Chain Pair Simplification).

Instance: Given a pair of polygonal chains A and B of lengths n and m, respectively,

an integer k, and three real numbers δ1, δ2, δ3 > 0.

Problem: Does there exist a pair of chains A′,B′, each of at most k vertices, such

that A′ is a δ1-simplification of A w.r.t. d1 (d1(A,A
′) ≤ δ1), B

′ is a δ2-simplification

of B w.r.t. d2 (d2(B,B′) ≤ δ2), and ddF (A
′, B′) ≤ δ3?

When the vertices of the simplifications are from A and B (restricted simplifica-

tions), the problem is called CPS, and when the vertices of the simplifications are

not necessarily from A and B (arbitrary simplifications), we call the problem GCPS.

For each problem, we distinguish between two versions:

1. When d1 = d2 = dH , the problems are called CPS-2H and GCPS-2H, respec-

tively.

2. When d1 = d2 = ddF , the problems are called CPS-3F and GCPS-3F, respec-

tively.

Remark 8.2. We sometimes say that a set D of disks of radius δ covers a chain

C. By this we mean that there exists a partition of C into consecutive subchains

C1, . . . , Ct = C, such that for each 1 ≤ i ≤ t there exists a disk in D that contains

all the points of Ci.

8.3 Weighted chain pair simplification

We first introduce and consider a more general version of CPS-3F, namely, Weighted

CPS-3F. In the weighted version of the chain pair simplification problem, the vertices

of the chains A and B are assigned arbitrary weights, and, instead of limiting the

length of the simplifications, one limits their weights. That is, the total weight of

each simplification must not exceed a given value. The problem is formally defined

as follows.

Problem 8.3 (Weighted Chain Pair Simplification).

Instance: Given a pair of 3D chains A and B, with lengths m and n, respec-

tively, an integer k, three real numbers δ1, δ2, δ3 > 0, and a weight function

C : {a1, . . . , am, b1, . . . , bn} → R+.

Problem: Does there exist a pair of chains A′,B′ with C(A′), C(B′) ≤ k, such that

the vertices of A′,B′ are from A,B respectively, d1(A,A
′) ≤ δ1, d2(B,B′) ≤ δ2, and

ddF (A
′, B′) ≤ δ3?
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When d1 = d2 = ddF , the problem is called WCPS-3F. When d1 = d2 = dH , the

problem is NP-complete, since the non-weighted version (i.e., CPS-2H) is already

NP-complete [BJW+08].

We prove that WCPS-3F is weakly NP-complete via a reduction from the set

partition problem: Given a set of positive integers S = {s1, . . . , sn}, find two sets

P1, P2 ⊂ S such that P1 ∩ P2 = ∅, P1 ∪ P2 = S, and the sum of the numbers in P1

equals the sum of the numbers in P2. This is a weakly NP-complete special case of

the classic subset-sum problem.

Our reduction builds two curves with weights reflecting the values in S. We think

of the two curves as the subsets of the partition of S. Although our problem requires

positive weights, we also allow zero weights in our reduction for clarity. Later, we

show how to remove these weights by slightly modifying the construction.

Figure 8.2: The reduction for the weighted chain pair simplification problem under the
discrete Fréchet distance.

Theorem 8.4. The weighted chain pair simplification problem under the discrete

Fréchet distance is weakly NP-complete.

Proof. Given the set of positive integers S = {s1, . . . , sn}, we construct two curves

A and B in the plane, each of length 2n. We denote the weight of a vertex xi

by w(xi). A is constructed as follows. The i’th odd vertex of A has weight si,

i.e. w(a2i−1) = si, and coordinates a2i−1 = (i, 1). The i’th even vertex of A has

coordinates a2i = (i + 0.2, 1) and weight zero. Similarly, the i’th odd vertex of B

has weight zero and coordinates b2i−1 = (i, 0), and the i’th even vertex of B has

coordinates b2i = (i+ 0.2, 0) and weight si, i.e. w(b2i) = si. Figure 8.2 depicts the

vertices a2i−1, a2i, a2(i+1)−1, a2(i+1) of A and b2i−1, b2i, b2(i+1)−1, b2(i+1) of B. Finally,

we set δ1 = δ2 = 0.2, δ3 = 1, and k = S, where S denotes the sum of the elements

of S (i.e., S =
∑n

j=1 sj).

We claim that S can be partitioned into two subsets, each of sum S/2, if and

only if A and B can be simplified with the constraints δ1 = δ2 = 0.2, δ3 = 1 and

k = S/2, i.e., C(A′), C(B′) ≤ S/2.

First, assume that S can be partitioned into sets SA and SB, such that
∑

s∈SA
s =∑

s∈SB
s = S/2. We construct simplifications of A and of B as follows.

A′ = {a2i−1 | si ∈ SA}∪{a2i | si /∈ SA} and B′ = {b2i | si ∈ SB}∪{b2i−1 | si /∈ SB} .
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It is easy to see that C(A′), C(B′) ≤ S/2. Also, since {SA, SB} is a partition of S,

exactly one of the following holds, for any 1 ≤ i ≤ n:

1. a2i−1 ∈ A′, b2i−1 ∈ B′ and a2i /∈ A′, b2i /∈ B′.

2. a2i−1 /∈ A′, b2i−1 /∈ B′ and a2i ∈ A′, b2i ∈ B′.

This implies that ddF (A,A
′) ≤ 0.2 = δ1, ddF (B,B′) ≤ 0.2 = δ2 and ddF (A

′, B′) ≤
1 = δ3.

Now, assume there exist simplifications A′, B′ of A,B, such that ddF (A,A
′) ≤

δ1 = 0.2, ddF (B,B′) ≤ δ2 = 0.2, ddF (A
′, B′) ≤ δ3 = 1, and C(A′), C(B′) ≤ k = S/2.

Since δ1 = δ2 = 0.2, for any 1 ≤ i ≤ n, the simplification A′ must contain one of

a2i−1, a2i, and the simplification B′ must contain one of b2i−1, b2i. Since δ3 = 1, for

any i, at least one of the following two conditions holds: a2i−1 ∈ A′ and b2i−1 ∈ B′

or a2i ∈ A′ and b2i ∈ B′. Therefore, for any i, either a2i−1 ∈ A or b2i ∈ B, implying

that si participates in either C(A′) or C(B′). However, since C(A′), C(B′) ≤ S/2, si

cannot participate in both C(A′) and C(B′). It follows that C(A′) = C(B′) = S/2,

and we get a partition of S into two sets, each of sum S/2.

Finally, we note that WCPS-3F is in NP. For an instance I with chains A,B,

given simplifications A′, B′, we can verify in polynomial time that ddF (A,A
′) ≤ δ1,

ddF (B,B′) ≤ δ2, ddF (A
′, B′) ≤ δ3, and C(A′), C(B′) ≤ k.

Although our construction of A′ and B′ uses zero weights, a simple modification

enables us to prove that the problem is weakly NP-complete also when only positive

integral weights are allowed. Increase all the weights by 1, that is, w(a2i−1) =

w(b2i) = si + 1 and w(a2i) = w(b2i−1) = 1, for 1 ≤ i ≤ n, and set k = S/2 + n. It is

easy to verify that our reduction still works. Finally, notice that we could overlay the

two curves choosing δ3 = 0 and prove that the problem is still weakly NP-complete

in one dimension.

8.4 CPS under DFD

We now turn our attention to CPS-3F, which is the special case of WCPS-3F where

each vertex has weight one.

8.4.1 CPS-3F is in P

We present an algorithm for the minimization version of CPS-3F. That is, we compute

the minimum integer k∗, such that there exists a “walk”, as above, in which each of

the dogs makes at most k∗ hops. The answer to the decision problem is “yes” if and

only if k∗ < k.

Returning to the analogy of the man and the dog, we can extend it as follows.

Consider a man and his dog connected by a leash of length δ1, and a woman and
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her dog connected by a leash of length δ2. The two dogs are also connected to each

other by a leash of length δ3. The man and his dog are walking on the points of a

chain A and the woman and her dog are walking on the points of a chain B. The

dogs may skip points. The problem is to determine whether there exists a “walk” of

the man and his dog on A and the woman and her dog on B, such that each of the

dogs steps on at most k points.

Overview of the algorithm. We say that (ai, ap, bj, bq) is a possible configuration of

the man, woman and the two dogs on the paths A and B, if d(ai, ap) ≤ δ1, d(bj, bq) ≤
δ2 and d(ap, bq) ≤ δ3. Notice that there are at most m2n2 such configurations. Now,

let G be the DAG whose vertices are the possible configurations, such that there

exists a (directed) edge from vertex u = (ai, ap, bj, bq) to vertex v = (ai′ , ap′ , bj′ , bq′)

if and only if our gang can move from configuration u to configuration v. That is, if

and only if i ≤ i′ ≤ i+ 1, p ≤ p′, j ≤ j′ ≤ j + 1, and q ≤ q′. Notice that there are

no cycles in G because backtracking is forbidden. For simplicity, we assume that the

first and last points of A′ (resp., of B′) are a1 and am (resp., b1 and bn), so the initial

and final configurations are s = (a1, a1, b1, b1) and t = (am, am, bn, bn), respectively.

(It is easy, however, to adapt the algorithm below to the case where the initial and

final points of A′ and B′ are not specified, see remark below.) Our goal is to find

a path from s to t in G. However, we want each of our dogs to step on at most k

points, so, instead of searching for any path from s to t, we search for a path that

minimizes the value max{|A′|, |B′|}, and then check if this value is at most k.

For each edge e = (u, v), we assign two weights, wA(e), wB(e) ∈ {0, 1}, in order to

compute the number of hops in A′ and in B′, respectively. wA(u, v) = 1 if and only if

the first dog jumps to a new point between configurations u and v (i.e., p < p′), and,

similarly, wB(u, v) = 1 if and only if the second dog jumps to a new point between u

and v (i.e., q < q′). Thus, our goal is to find a path P from s to t in G, such that

max{
∑
e∈P

wA(e),
∑
e∈P

wB(e)} is minimized.

Assume w.l.o.g. that m ≤ n. Since |A′| ≤ m and |B′| ≤ n, we maintain, for each

vertex v of G, an array X(v) of size m, where X(v)[r] is the minimum number z

such that v can be reached from s with (at most) r hops of the first dog and z hops

of the second dog. We can construct these arrays by processing the vertices of G

in topological order (i.e., a vertex is processed only after all its predecessors have

been processed). This yields an algorithm of running time O(m3n3min{m,n}), as
described in Algorithm 8.1.

Running time. The number of vertices in G is |V | = O(m2n2). By the construction

of the graph, for any vertex (ai, ap, bj, bq) the maximum number of outgoing edges is

O(mn). So we have |E| = O(|V |mn) = O(m3n3). Thus, constructing the graph G

in Step 1 takes O(n3m3) time. Step 2 takes O(|E|) time, while Step 3 takes O(m)



112 The Chain Pair Simplification Problem

Algorithm 8.1 CPS-3F

1. Create a directed graph G = (V,E) with two weight functions wA, wB , such that:

� V is the set of all configurations (ai, ap, bj , bq) with d(ai, ap) ≤ δ1, d(bj , bq) ≤ δ2, and
d(ap, bq) ≤ δ3.

� E = {((ai, ap, bj , bq), (ai′ , ap′ , bj′ , bq′)) | i ≤ i′ ≤ i+ 1, p ≤ p′, j ≤ j′ ≤ j + 1, q ≤ q′}.
� For each ((ai, ap, bj , bq), (ai′ , ap′ , bj′ , bq′)) ∈ E, set

– wA((ai, ap, bj , bq), (ai′ , ap′ , bj′ , bq′)) =

{
1, p < p′

0, otherwise

– wB((ai, ap, bj , bq), (ai′ , ap′ , bj′ , bq′)) =

{
1, q < q′

0, otherwise

2. Sort V topologically.

3. Initialize the array X(s) (i.e., set X(s)[r] = 0, for r = 0, . . . ,m− 1).

4. For each v ∈ V \ {s} (advancing from left to right in the sorted sequence) do:

(a) Initialize the array X(v) (i.e., set X(v)[r] =∞, for r = 0, . . . ,m− 1).

(b) For each r between 0 and m− 1, compute X(v)[r]:

X(v)[r] = min

(u, v) ∈ E

{
X(u)[r] + wB(u, v), wA(u, v) = 0

X(u)[r − 1] + wB(u, v), wA(u, v) = 1

5. Return k∗ = min
r

max{r, X(t)[r]} .

time. In Step 4, for each vertex v and for each index r, we consider all configurations

that can directly precede v. So each edge of G participates in exactly m minimum

computations, implying that Step 4 takes O(|E|m) time. Step 5 takes O(m) time.

Thus, the total running time of the algorithm is O(m4n3).

Theorem 8.5. The chain pair simplification problem under the discrete Fréchet

distance (CPS-3F) is polynomial, i.e., CPS-3F ∈ P.

Remark 8.6. As mentioned, we have assumed that the first and last points of A′

(resp., B′) are a1 and am (resp., b1 and bn), so we have a single initial configuration

(i.e., s = (a1, a1, b1, b1)) and a single final configuration (i.e., t = (am, am, bn, bn)).

However, it is easy to adapt our algorithm to the case where the first and last points

of the chains A′ and B′ are not specified. In this case, any possible configuration of

the form (a1, ap, b1, bq) is considered a potential initial configuration, and any possible

configuration of the form (am, ap, bn, bq) is considered a potential final configuration,

where 1 ≤ p ≤ m and 1 ≤ q ≤ n. Let S and T be the sets of potential initial and

final configurations, respectively. (Then, |S| = O(mn) and |T | = O(mn).) We thus

remove from G all edges entering a potential initial configuration, so that each such

configuration becomes a “root” in the (topologically) sorted sequence. Now, in Step 3

we initialize the arrays of each s ∈ S in total time O(m2n), and in Step 4 we only

process the vertices that are not in S. The value X(v)[r] for such a vertex v is now
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the minimum number z such that v can be reached from s with r hops of the first

dog and z hops of the second dog, over all potential initial configurations s ∈ S. In

the final step of the algorithm, we calculate the value k∗ in O(m) time, for each

potential final configuration t ∈ T . The smallest value obtained is then the desired

value. Since the number of potential final configurations is only O(mn), the total

running time of the final step of the algorithm is only O(m2n), and the running time

of the entire algorithm remains O(m4n3).

The weighted version

Weighted CPS-3F, which was shown to be weakly NP-complete in the previous

section, can be solved in a similar manner, albeit with running time that depends

on the number of different point weights in chain A (alternatively, B). We now

explain how to adapt our algorithm to the weighted case. We first redefine the weight

functions wA and wB (where C(x) is the weight of point x):

� wA((ai, ap, bj, bq), (ai′ , ap′ , bj′ , bq′)) =

C(ap′), p < p′

0, otherwise

� wB = ((ai, ap, bj, bq), (ai′ , ap′ , bj′ , bq′))

C(bq′), q < q′

0, otherwise

Next, we increase the size of the arrays X(v) from m to the number of different

weights that can be obtained by a subset of A (alternatively, B). (For example, if

|A| = 3 and C(a1) = 2, C(a2) = 2, and C(a3) = 4, then the weights that can be

obtained are 2, 4, 2 + 4 = 6, 2 + 2 + 4 = 8, so the size of the arrays would be 4.) Let

c[r] be the r’th largest such weight. Then X(v)[r] is the minimum number z, such

that v can be reached from s with hops of total weight (at most) c[r] of the first dog

and hops of total weight z of the second dog. X(v)[r] is calculated as follows:

X(v)[r] = min

(u, v) ∈ E

X(u)[r] + wB(u, v), wA(u, v) = 0

X(u)[r′] + wB(u, v), wA(u, v) > 0
,

where c[r′] = c[r]−wA(u, v). If the number of different weights that can be obtained

by a subset of A (alternatively, B) is f(A) (resp., f(B)), then the running time is

O(m3n3f(A)) (resp., O(m3n3f(B))), since the only change that affects the running

time is the size of the arrays X(v). We thus have

Theorem 8.7. The weighted chain pair simplification problem under the discrete

Fréchet distance (Weighted CPS-3F) (and its corresponding minimization problem)

can be solved in O(m3n3min{f(A), f(B)}) time, where f(A) (resp., f(B)) is the

number of different weights that can be obtained by a subset of A (resp., B). In
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particular, if only one of the chains, say B, has points with non-unit weight, then

f(A) = O(m), and the running time is polynomial; more precisely, it is O(m4n3).

Remark 8.8. We presented an algorithm that minimizes max{|A′|, |B′|} given the

error parameters δ1, δ2, δ3. Another optimization version of CPS-3F is to minimize,

e.g., δ3 (while obeying the requirements specified by δ1, δ2 and k). It is easy to see

that Algorithm 8.1 can be adapted to solve this version within roughly the same

time bound.

8.4.2 An efficient implementation for CPS-3F

The time and space complexity of Algorithm 8.1 (which is O(m3n3min {m,n}) and
O(m3n3), respectively) makes it impractical for our motivating biological application

(as m,n could be 500∼600). In this section, we show how to reduce the time and

space bounds by a factor of mn, using dynamic programming.

We generate all configurations of the form (ai, ap, bj, bq), where the outermost

for-loop is governed by i, the next level loop by j, then p, and finally q. When a

new configuration v = (ai, ap, bj, bq) is generated, we first check whether it is possible.

If it is not possible, we set X(v)[r] = ∞, for 1 ≤ r ≤ m, and if it is, we compute

X(v)[r], for 1 ≤ r ≤ m.

We also maintain for each pair of indices i and j, three tables Ci,j, Ri,j, Ti,j that

assist us in the computation of the values X(v)[r]:

Ci,j[p, q, r] = min
1≤p′≤p

X(ai, ap′ , bj, bq)[r]

Ri,j[p, q, r] = min
1≤q′≤q

X(ai, ap, bj, bq′)[r]

Ti,j[p, q, r] = min
1≤p′≤p
1≤q′≤q

X(ai, ap′ , bj, bq′)[r]

Notice that the value of cell [p, q, r] is determined by the value of one or two

previously-determined cells and X(ai, ap, bj, bq)[r] as follows:

Ci,j[p, q, r] = min{Ci,j[p− 1, q, r], X(ai, ap, bj, bq)[r]}

Ri,j[p, q, r] = min{Ri,j[p, q − 1, r], X(ai, ap, bj, bq)[r]}

Ti,j[p, q, r] = min{Ti,j[p− 1, q, r], Ti,j[p, q − 1, r], X(ai, ap, bj, bq)[r]}

Observe that in any configuration that can immediately precede the current

configuration (ai, ap, bj, bq), the man is either at ai−1 or at ai and the woman is either

at bj−1 or at bj (and the dogs are at ap′ , p
′ ≤ p, and bq′ , q

′ ≤ q, respectively). The

“saving” is achieved, since now we only need to access a constant number of table

entries in order to compute the value X(ai, ap, bj, bq)[r].

One can illustrate the algorithm using the matrix in Figure 8.3. There are
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ai

bj

ai−1

bj−1

Figure 8.3: Illustration of Algorithm 8.2.

mn large cells, each of them containing a matrix of size mn. The large cells

correspond to the positions of the man and the woman. The inner matrices correspond

to the positions of the two dogs (for given positions of the man and woman).

Consider an optimal “walk” of the gang that ends at cell (ai, ap, bj, bq) (marked

by a full circle), such that the first dog has visited r points. The previous cell in

this “walk” must be in one of the 4 large cells (ai, bj),(ai−1, bj),(ai, bj−1),(ai−1, bj−1).

Assume, for example, that it is in (ai−1, bj). Then, if it is in the blue area, then

X(ai, ap, bj, bq)[r] = Ci−1,j[p− 1, q, r − 1] (marked by an empty square), since only

the position of the first dog has changed when the gang moved to (ai, ap, bj, bq). If it

is in the purple area, then X(ai, ap, bj, bq)[r] = Ri−1,j [p, q − 1, r] + 1 (marked by a x),

since only the position of the second dog has changed. If it is in the orange area,

then X(ai, ap, bj, bq)[r] = Ti−1,j[p− 1, q − 1, r − 1] + 1 (marked by an empty circle),

since the positions of both dogs have changed. Finally, if it is the cell marked by

the full square, then simply X(ai, ap, bj, bq)[r] = X(ai−1, ap, bj, bq)[r], since both dogs

have not moved. The other three cases, in which the previous cell is in one of the 3

large cells (ai, bj),(ai, bj−1),(ai−1, bj−1), are handled similarly.

We are ready to present the dynamic programming algorithm. The initial config-

urations correspond to cells in the large cell (a1, b1). For each initial configuration

(a1, ap, b1, bq), we set X(a1, ap, b1, bq)[1] = 1.

Theorem 8.9. The minimization version of the chain pair simplification problem

under the discrete Fréchet distance (CPS-3F) can be solved in O(m2n2min {m,n})
time.

8.4.3 1-sided CPS

Sometimes, one of the two input chains, say B, is much shorter than the other,

possibly because it has already been simplified. In these cases, we only want to

simplify A, in a way that maintains the resemblance between the two input chains.

We thus define the 1-sided chain pair simplification problem.
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Algorithm 8.2 CPS-3F using dynamic programming
for i = 1 to m

for j = 1 to n

for p = 1 to m

for q = 1 to n

for r = 1 to m

X(−1,0) =min


Ci−1,j [p− 1, q, r − 1]

Ri−1,j [p, q − 1, r] + 1

Ti−1,j [p− 1, q − 1, r − 1] + 1

X(ai−1, ap, bj , bq)[r]

X(0,−1) =min


Ci,j−1[p− 1, q, r − 1]

Ri,j−1[p, q − 1, r] + 1

Ti,j−1[p− 1, q − 1, r − 1] + 1

X(ai, ap, bj−1, bq)[r]

X(−1,−1) =min


Ci−1,j−1[p− 1, q, r − 1]

Ri−1,j−1[p, q − 1, r] + 1

Ti−1,j−1[p− 1, q − 1, r − 1] + 1

X(ai−1, ap, bj−1, bq)[r]

X(0,0) =min


Ci,j [p− 1, q, r − 1]

Ri,j [p, q − 1, r] + 1

Ti,j [p− 1, q − 1, r − 1] + 1

X(ai, ap, bj , bq)[r] = min{X(−1,0), X(0,−1), X(−1,−1), X(0,0)}

Ci,j [p, q, r] =min{Ci,j [p− 1, q, r], X(ai, ap, bj , bq)[r]}
Ri,j [p, q, r] =min{Ri,j [p, q − 1, r], X(ai, ap, bj , bq)[r]}
Ti,j [p, q, r] =min{Ti,j [p− 1, q, r], Ti,j [p, q − 1, r], X(ai, ap, bj , bq)[r]}

return min
r,p,q

max{r,X(am, ap, bn, bq)[r]}

Problem 8.10 (1-Sided Chain Pair Simplification).

Instance: Given a pair of polygonal chains A and B of lengths m and n, respectively,

an integer k, and two real numbers δ1, δ3 > 0.

Problem: Does there exist a chain A′ of at most k vertices, such that the vertices

of A′ are from A, ddF (A,A
′) ≤ δ1, and ddF (A

′, B) ≤ δ3?

The optimization version of this problem can be solved using similar ideas to those

used in the solution of the 2-sided problem. Here a possible configuration is a 3-tuple

(ai, ap, bj), where d(ai, ap) ≤ δ1 and d(ap, bj) ≤ δ3. We construct a graph and find a

shortest path from one of the starting configurations to one of the final configurations;

see Algorithm 8.3. Arguing as for Algorithm 8.1, we get that |V | = O(m2n) and

|E| = O(|V |m) = O(m3n). Moreover, it is easy to see that the running time of

Algorithm 8.3 is O(m3n), since it does not maintain an array for each vertex.

To reduce the running time we use dynamic programming as in Section 8.4.2.

We generate all configurations of the form (ai, ap, bj). When a new configuration

v = (ai, ap, bj) is generated, we first check whether it is possible. If it is not possible,
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Algorithm 8.3 1-sided CPS-3F

1. Create a directed graph G = (V,E) with a weight function w, such that:

� V = {(ai, ap, bj) | d(ai, ap) ≤ δ1 and d(ap, bj) ≤ δ3}.
� E = {((ai, ap, bj), (ai′ , ap′ , bj′)) | i ≤ i′ ≤ i+ 1, p ≤ p′, j ≤ j′ ≤ j + 1}.
� For each ((ai, ap, bj), (ai′ , ap′ , bj′)) ∈ E, set

w((ai, ap, bj), (ai′ , ap′ , bj′) =

{
1, p < p′

0, otherwise

� Let S be the set of starting configurations and let T be the set of final configurations.

2. Sort V topologically.

3. Set X(s) = 0, for each s ∈ S.

4. For each v ∈ V \ S (advancing from left to right in the sorted sequence) do:

X(v) = min
(u,v)∈E

{X(u) + w(u, v)}.

5. Return k∗ = min
t∈T

X(t).

we set X(v) =∞, and if it is, we compute X(v). We also maintain for each pair of

indices i and j, a table Ai,j that assists us in the computation of the value X(v):

Ai,j[p] = min1≤p′≤pX(ai, ap′ , bj). Notice that Ai,j[p] is the minimum of Ai,j[p − 1]

and X(ai, ap, bj).

We observe once again that in any configuration that can immediately precede

the current configuration (ai, ap, bj), the man is either at ai−1 or at ai and the woman

is either at bj−1 or at bj (and the dog is at ap′ , p
′ ≤ p). The “saving” is achieved,

since now we only need to access a constant number of table entries in order to

compute the value X(ai, ap, bj). We obtain Algorithm 8.4, a dynamic programming

algorithm whose running time is O(m2n).

ai

bj

ai−1

bj−1

Figure 8.4: The vertex matrix.

We can illustrate the algorithm using the matrix in Figure 8.4. There are mn
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Algorithm 8.4 1-sided CPS-3F using dynamic programming
for i = 1 to m

for j = 1 to n

for p = 1 to m

X(−1,0) =min

{
Ai−1,j [p− 1] + 1

X(ai−1, ap, bj)

X(0,−1) =min

{
Ai,j−1[p− 1] + 1

X(ai, ap, bj−1)

X(−1,−1) =min

{
Ai−1,j−1[p− 1] + 1

X(ai−1, ap, bj−1)

X(0,0) =Ai,j [p− 1] + 1

X(ai, ap, bj) =min{X(−1,0), X(0,−1), X(−1,−1), X(0,0)}
Ai,j [p] =min{Ai,j [p− 1], X(ai, ap, bj)}

return min
p
{X(am, ap, bn)}

large cells, each of them contains an array of size m. The large cells correspond to the

positions of the man and the woman. The arrays correspond to the position of the

dog. Consider an optimal “walk” of the gang that ends in the position (ai, ap, bj, bq)

(the black circle). The previous position of the gang correspond to a vertex that can

be located only in one of the 4 cells (ai, bj),(ai−1, bj),(ai, bj−1),(ai−1, bj−1). Moreover,

it can only be one of the vertices marked in orange or the red circles. If, for example,

it is located in the left top orange area, then C(ai, ap, bj) = Ai−1,j[p − 1], because

Ai−1,j [p−1] is the minimum number of steps of the dog when position of the man and

the woman is (ai−1, bj). If it is the left top black circle, then it is simply C(ai−1, ap, bj)

since the dog stayed at the same position. Symmetrically, this is true for the other 3

large cells.

Theorem 8.11. The 1-sided chain pair simplification problem under the discrete

Fréchet distance can be solved in O(m2n) time.

8.5 GCPS under DFD

In this section we consider the general case of the problem, where the points of a

simplification are not necessarily from the original chain.

8.5.1 GCPS-3F is in P

In order to solve GCPS-3F, we consider the optimization problem: Given a pair

of polygonal chains A and B of lengths n and m, respectively, and three real

numbers δ1, δ2, δ3 > 0, what is the smallest number k such that there exist a pair

of chains A′,B′, each of at most k (arbitrary) vertices, for which ddF (A,A
′) ≤ δ1,

ddF (B,B′) ≤ δ2, and ddF (A
′, B′) ≤ δ3?
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We begin by describing some properties that are required from an optimal solution

to the problem. Then, based on these properties, we are able to refine our search for

the optimal solution.

What does an optimal solution look like?

Let (A′, B′) be an optimal solution, that is, let A′ and B′ be two arbitrary sim-

plifications of A and B respectively, such that ddF (A,A
′) ≤ δ1, ddF (B,B′) ≤ δ2,

ddF (A
′, B′) ≤ δ3, and max{|A′|, |B′|} is minimum. Moreover, we assume that the

shorter of the chains A′, B′ is as short as possible.

Let WA′B′ = {(A′
i, B

′
i)}ti=1 be a Fréchet walk along A′ and B′. Notice that, by

definition, for any i it holds that |A′
i| = 1 or |B′

i| = 1.

A A′ B′ B

a′1

a′2

b′1

b′2

b′7

b′4

b′6

a′3

a′4

a′5

b′3

a′6

b1
b2
b3
b4
b5
b6

b7
b8
b9

b10

b11

b12
b13

b14
b15

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

b′5

Figure 8.5: How does an optimal solution look like? a composition of pair-components:
WA′B′ = {({a′1}, {b′1, b′2}), ({a′2, a′3}, {b′3}), ({a′4}, {b′4, b′5}), ({a′5}, {b′6}), ({a′6}, {b′7})}
(A1 = A[1, 4], B1 = [1, 6]), (A2 = A[5, 12], B2 = B[7, 9]), (A3 = A[13], B3 = B[10, 11]),

(A4 = A[13], B4 = B[12, 13]), (A5 = A[13], B5 = B[14, 15]).

Let WAA′ be a Fréchet walk along A and A′. Notice that unlike in regular (one-

sided) simplifications, the pairs in WAA′ may match several points from A′ to a single

point from A, because A′ does not depend only on A but also on B′ and B. Similarly,

let WBB′ be a Fréchet walk along B and B′ (see Figure 8.5).

With each pair (A′
i, B

′
i) ∈ WA′B′ , we associate a pair of subchains Ai of A and Bi

of B, which we call a pair component. Assume A′
i = A′[p, q], then Ai is defined as

follows:

1. If p ̸= q, then each a′k ∈ A′[p, q] appears as a singleton in WAA′ (since otherwise

A′ can be shortened). Let Ak be the subchain of A that is matched to a′k, i.e.,

(Ak, a′k) ∈ WAA′ , for k = p, . . . , q. Then, we set Ai = ApAp+1 · · ·Aq.

2. If p = q and a′p appears as a singleton in WAA′ , then we set Ai = Ap.

3. If p = q and a′p belongs to some subchain of A′ of length at least two that is

matched (in WAA′) to a single element al ∈ A, we set Ai = al.
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The subchains B1, . . . , Bt are defined analogously.

We need two observations. The first one is that Ai and Bi are indeed subchains

(consecutive sets of points). This is simply because the matchings of the points

from A′
i and B′

i in WAA′ and WBB′ , respectively, are sub-chains, and by definition

Ai = ApAp+1 · · ·Aq is also a consecutive set of points. The second observation is that

the subchains A1, . . . , At (resp. B1, . . . , Bt) are almost-disjoint, in the sense that

there can be only one point ax that belongs to both Ai and Ai+1, and in that case

Ai = Ai+1 = (ax). This is because if there were more than one point in common, or,

if one of Ai, Ai+1 contained more points, then the sets in WAA′ (resp. WBB′) were

not disjoint.

So what does an optimal solution look like? It is composed of such almost-disjoint

pair-components. A pair-component is a pair of sub-chains, (Ai, Bi), Ai ⊆ A, Bi ⊆ B,

such that the points of Ai (resp. Bi) can be covered by one disk c of radius δ1 (resp.

δ2), the points of Bi (resp. Ai) can be covered by a set C of disks of radius δ2 (resp.

δ1), and for any c′ ∈ C, the distance between the center of c and c′ is at most δ3.

The idea of the algorithm is to compute all the possible components (and that

there are not too many of them), and then use dynamic programming to compute

the optimal solution that is composed of pair-components.

The algorithm

For any two sub-chains A[i, i′] and B[j, j′] there are two possible types of pair-

components. In the first type, there is only one disk that covers A[i, i′], and in the

second type, there is only one disk that covers B[j, j′].

We denote by PC1[i, i
′, j, j′] the size of the minimum-cardinality set C of disks of

radius δ2 needed in order to cover B[j, j′], such that there exists a disk c of radius

δ1 that covers A[i, i′], and for any c′ ∈ C, the distance between the centers of c and

c′ is at most δ3. Symmetrically, we define PC2[i, i
′, j, j′]. For any 4-tuple of indices

(i, i′, j, j′) we need to compute PC1[i, i
′, j, j′] and PC2[i, i

′, j, j′].

Now, in order to compute an optimal solution, we need to combine pair-components

in a way that will result in a simplification of minimum size. We use dynamic pro-

gramming.

Let OPT [i, j][r] be the minimum number of points in a simplification of B[1, j]

in an optimal solution for A[1, i], B[1, j] in which the number of points in the

simplification ofA[1, i] is at most r. Then we have the following dynamic programming

algorithm: OPT [1, 1][r] = 1 if and only if ||a1 − b1|| ≤ δ1 + δ2 + δ3, and

OPT [1, j][r] = min
q≤j
{OPT [1, q − 1][r − 1] + PC1[1, 1, q, j]},

OPT [i, 1][r] = min
p≤i
{OPT [p− 1, 1][r − PC2[p, i, 1, 1]] + 1},
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OPT [i, j][r] = min
p≤i,q≤j

{OPT [p− 1, q − 1][r − 1] + PC1[p, i, q, j],

OPT [i, q − 1][r − 1] + PC1[i, i, q, j],

OPT [p− 1, q − 1][r − PC2[p, i, q, j]] + 1,

OPT [p− 1, j][r − PC2[p, i, j, j]] + 1}.

Theorem 8.12. For any i,j and r, OPT [i, j][r] is the minimum number of points

in a simplification of B[1, j] in an optimal solution for A[1, i], B[1, j] in which the

number of points in the simplification of A[1, i] is at most r.

Proof. The proof is by induction on i, j, and r. For i = 1 and j = 1 the theorem

holds by definition. Let A′ and B′ be an optimal solution for A[1, i], B[1, j], s.t.

|A′| ≤ r. Let [p, i, q, j] be the last pair-component in this solution. If [p, i, q, j] is of

type 1, i.e. there is one disk that covers A[p, i] and PC1[p, i, q, j] disks that cover

B[q, j], then there are two possibilities: if p = i and the pair-component that came

before [p, i, q, j] is [i, i, q′, q − 1] for some q′ ≤ q − 1, then

OPT [i, j][r] = OPT [i, q − 1][r − 1] + PC1[i, i, q, j],

else,

OPT [i, j][r] = OPT [p− 1, q − 1][r − 1] + PC1[p, i, q, j].

If [p, i, q, j] is of type 2, i.e. there is one point that covers B[q, j] and PC2[p, i, q, j]

points that cover A[p, i], then again we have two possibilities,

OPT [i, j][r] = OPT [p− 1, j][r − PC2[p, i, j, j]] + 1, or

OPT [i, j][r] = OPT [p− 1, q − 1][r − PC2[p, i, q, j]] + 1.

Computing the components

Let D(p, δ) denote the disk centred at p with radius δ.

Recall that PC1[i, i
′, j, j′] is the size of a minimum-cardinality set C of disks of

radius δ2 needed in order to cover B[j, j′], such that there exists a disk c of radius δ1

that covers A[i, i′], and for any c′ ∈ C, the distance between the centers of c and c′

is at most δ3.

We show how to find PC1[i, i
′, j, j′] for all 1 ≤ i ≤ i′ ≤ n and 1 ≤ j ≤ j′ ≤ m

(PC2[i, i
′, j, j′] is symmetric). We begin with a few observations to give an intuition

for the algorithm.

Consider PC1[i, i
′, j, j′]. First, notice that the center of c is in the region

Xi,i′ =
⋂

i≤k≤i′
D(ak, δ1), because the distance from c to any point in A[i, i′] is at

most δ1.
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Figure 8.6: The blue filled disks represent D(bj , δ2) and the empty dashed green disks
represent D(bj , δ2 + δ3). The small disks has radius δ3.

Any c′ ∈ C is covering a consecutive subchain of B[j, j′]. Thus, for any

j ≤ t ≤ t′ ≤ j′, the center of a disk c′ that covers the subsequence B[t, t′]

(if exists) is in the region Zt,t′ =
⋂

t≤k≤t′
D(bk, δ2) (see Figure 8.6(a)). There are

O((j′ − j)2) = O(m2) such regions.

1
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3

5

6

Xi,i′

z

Figure 8.7: The arrangement obtained by the intersection of Xi,i′ and the arrangement of
{Yt,t′ | j ≤ t ≤ t′ ≤ j′}.

Each such region is convex and composed of linear number of arcs. Any point

placed inside Zt,t′ can cover B[t, t′], and we need a point with distance at most δ3

to the center of c. For each Zt,t′ , consider the Minkowski sum Yt,t′ = Zt,t′ ⊕ δ3 (see

Figure 8.6(b)).

Now, consider the arrangement obtained by the intersection of Xi,i′ and the

arrangement of {Yt,t′ | j ≤ t ≤ t′ ≤ j′} (see Figure 8.7). Each cell in this

arrangement corresponds to a set of Yt,t′ ’s, each has some point with distance at

most δ3 to the same points in Xi,i′ . Each cell corresponds to a possible choice of the

center of c, or, in other words, a possible pair-component of type 1.

We now describe an algorithm for computing PC1[i, i
′, j, j′] for all 1 ≤ i ≤ i′ ≤ n

and 1 ≤ j ≤ j′ ≤ m. The algorithm is quite complex and has several sub-procedures.

Let X = {Xi,i′ =
⋂

i≤k≤i′
D(ak, δ1) | 1 ≤ i ≤ i′ ≤ n}. The number of shapes in X is

O(n2).

Let Y = {Yj,j′ | 1 ≤ j ≤ j′ ≤ m, Zj,j′ ̸= ∅}. The number of shapes in Y is O(m2),

each shape is of complexity O(m).

Consider the arrangement A(Y ) of the shapes in Y .
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Lemma 8.13. The number of cells in A(Y ) is O(m4).

Proof. Let P be the set of intersection points between the disks in {D(bj, δ2) | 1 ≤
j ≤ m}. Consider the following set of disks: D = {D(bi, δ2 + δ3) | 1 ≤ i ≤
m} ∪ {D(p, δ3) | p ∈ P}. Notice that the arcs and vertices of A(Y ) are a subset of

the arcs and vertices of A(D) (see Figure 8.6(c)). Since the number of points in P is

O(m2), we get that the number of disks in A(D) is O(m2), and thus the complexity

of A(D) is O(m4).

Notice that for any shape Yj,j′ ∈ Y and a cell z ∈ A(Y ) it holds that Yj,j′ ∩ z ̸= ∅
if and only if z ⊆ Yj,j′ . For each cell z ∈ A(Y ), let Yz be the set of O(m2) shapes

from Y that contain z. The algorithm has two main steps:

1. For each cell z ∈ A(Y ), and for any two indices 1 ≤ j ≤ j′ ≤ m, compute

SizeB(z, j, j
′) – the minimum number of shapes from Yz needed in order to

cover the points of B[j, j′]. Recall that a shape Yt,t′ ∈ Yz covers the subsequence

B[t, t′], in other words, there exists a point q in Yt,t′ s.t. d(q, bk) ≤ δ2 for any

t ≤ k ≤ t′.

2. For each shape Xi,i′ ∈ X, and for any two indices 1 ≤ j ≤ j′ ≤ m, compute

SizeA(Xi,i′ , j, j
′) = min

z∩Xi,i′ ̸=∅
SizeB(z, j, j

′).

Note that SizeA(Xi,i′ , j, j
′) = PC1[i, i

′, j, j′].

Step 1

First we have to find the set Yz for each cell z ∈ A(Y ). We start by computing Y :

for any j, j′ we check whether
⋂

j≤k≤j′
D(bk, δ2) ̸= ∅. If yes, we add Yj,j′ to Y . This can

be done in O(m3) time. Then we compute the arrangement A(Y ), while maintaining

the lists Yz for any cell z ∈ A(Y ). This can be done in O(m4) as the complexity of

A(Y ) is O(m4).

Now, for each cell z ∈ A(Y ) we compute SizeB(z, j, j
′) for all 1 ≤ j ≤ j′ ≤ m

as follows: Notice that the problem of finding a minimum cover to B[j, j′] from a

set of subsequences, is actually an interval-cover problem. We refer to the shapes in

Yz as intervals (between 1 and m), and the goal is to find the minimum number of

intervals from Yz needed in order to cover the interval [j, j′].

First, for every 1 ≤ j ≤ n we find max(j) - the largest interval from Yz that

starts at j. This can be done simply in O(m2 logm) time, by sorting the intervals

first by their lower bound and then by their upper bound.

Next, for an interval Yt,t′ ∈ Yz, consider the intervals in Yz whose lower bound

lies in [t, t′] and whose upper bound is greater than t′. Let next(Yt,t′) be the largest

upper bound among the upper bounds of these intervals. We can find next(Yt,t′),

for each Yt,t′ ∈ Yz, in total time O(m2 logm), using a segment tree as follows: Let
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S = {s1, . . . , sn} be a set of line segments on the x-axis, si = [ai, bi]. Construct a

segment tree for the set S. With each vertex v of the tree, store a variable rv, whose

initial value is −∞. Query the tree with each of the left endpoints. When querying

with ai, in each visited vertex v with non-empty list of segments do: if bi > rv, then

set rv to bi. Finally, for each segment s, let next(s) be the maximum over the values

rv of the vertices storing s.

After computing next(Yt,t′) for all Yt,t′ ∈ Yz (assume next(Yt,t′) = −∞ for

Yt,t′ /∈ Yz), we use Algorithm 8.5 to compute SizeB(z, j, j
′) for all 1 ≤ j ≤ j′ ≤ m.

The running time of Algorithm 8.5 is O(m2). Thus, computing SizeB(z, j, j
′) for all

cells z ∈ A(Y ) and all indices 1 ≤ j ≤ j′ ≤ m takes O(m6 logm) time.

Algorithm 8.5 SizeB(Yz)

For j from 1 to m:

1. Set counter ← 1

2. Set j′ ← j.

3. Set p← max{next(Yj,j′),max(j′ + 1)}.
4. While p ̸= −∞:

For k from j′ to p: Set SizeB(z, j, k)← counter.

Set counter ← counter + 1

Set p← max{next(Yj′,k),max(k + 1)}.
Set j′ ← k.

Step 2

Recall that A(Y ) is the arrangement obtained from the shapes in Y . Let A(DA) be

the arrangement of the disks DA = {D(ak, δ1) | 1 ≤ k ≤ n}. The number of cells in

A(DA) is O(n2).

A trivial algorithm to compute the value SizeA(Xi,i′ , j, j
′) is by considering

the values SizeB(z, j, j
′) of O(m4) cells from A(Y ). Since there are O(n2) shapes

Xi,i′ ∈ X and O(m2) pairs of indices 1 ≤ j ≤ j′ ≤ m, the running time will be

O(n2m6). We manage to reduce the running time by a factor of O(n), using some

properties of the arrangement of disks.

Let U be the arrangement of the shapes in Y and the disks in DA. Notice that U
is a union of the arrangements A(DA) and A(Y ).

Lemma 8.14. The number of cells in U is O((m2 + n)2).

The proof is similar to the proof of Lemma 8.13.

We make a few quick observations:

Observation 8.15. For any two cells w ∈ U , x ∈ A(DA), x ∩ w ≠ ∅ if and only if

w ⊆ x. Similarly, for any cell z ∈ A(Y ), z ∩ w ̸= ∅ if and only if w ⊆ z.
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Figure 8.8: The arrangement A(DA). After computing SizeA(X1,4, j, j
′), we know that

SizeA(X1,3, j, j
′) is the minimum between SizeA(X1,4, j, j

′) and the values of the cells in
O1,3.

Observation 8.16. For any cell x ∈ A(DA), if Xi,i′ ∩ x ̸= ∅, then x ⊆ Xi,i′.

Observation 8.17. For any 1 ≤ i ≤ i′ ≤ n we have Xi,i′+1 ⊆ Xi,i′.

Given w ∈ U , let zw be the cell fromA(Y ) that contains w. We have SizeB(w, j, j
′) =

SizeB(z, j, j
′). Let Oi,i′ be the set of cells w ∈ U s.t. w ⊆ Xi,i′ and w ⊈ Xi,i′+1.

For fixed 1 ≤ j ≤ j′ ≤ m and 1 ≤ i ≤ n, the idea is to compute the values

SizeA(Xi,n, j, j
′), SizeA(Xi,n−1, j, j

′), . . . , SizeA(Xi,i, j, j
′)

in this order, so we can use the value of SizeA(Xi,i′+1, j, j
′) in order to compute

SizeA(Xi,i′ , j, j
′), adding only the values of the cells in Oi,i′ (see Figure 8.8). This

way, any cell in U will be checked only once (for any fixed 1 ≤ j ≤ j′ ≤ m and

1 ≤ i ≤ n), and the running time will be O(m2n(n+m2)2).

Now we have to show how to find the sets Oi,i′ .

First, for any cell x ∈ A(DA) we find all the cells w ∈ U such that w ⊆ x. There

are O(n2) cells in A(DA), but from Observation 8.15 we keep a total of O((m2 +n)2)

cells from U .
Then, for any shape Xi,i′ ∈ X we find the set of cells Pi,i′{x ∈ A(DA) | x ⊆ Xi,i′}.

There are O(n2) shapes in X, and for each shape we keep O(n2) cells from A(DA).

Now we have Oi,i′ = Pi,i′ \ Pi,i′+1. The size of Pi,i′ is O(n2), so computing Oi,i′

for all 1 ≤ i ≤ i′ ≤ n takes O(n4) time.

The total running time for all PC1[i, i
′, j, j′] is O(m6 logm+m2n(n+m2)2)

Total running time

For computing PC2[i, i
′, j, j′] we get symmetrically a total running time of O(n6 log n+

n2m(m + n2)2), so the running time for computing all the components is O((m +

n)6min{m,n}). Calculating OPT [i, j][r] takes O(m2n2min{m,n}) time, all together

takes O((m+ n)6min{m,n}) time.
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8.5.2 An approximation algorithm for GCPS-3F

To approximate GCPS, we use approximated pair-components which are easier to

compute.

Let APC1[i, i
′, j, j′] be the minimum number of disks with radius δ2 needed in

order to cover the points of B[j, j′] (in order), and whose centers are located in

Xi,i′ ⊕ δ3. Similarly, let APC2[i, i
′, j, j′] be the minimum number of disks with radius

δ1 needed in order to cover the points of A[i, i′] (in order), and whose centers are

located in Zj,j′ ⊕ δ3.

Lemma 8.18. For any 1 ≤ i ≤ i′ ≤ n, 1 ≤ j ≤ j′ ≤ m, APC1[i, i
′, j, j′] ≤

PC1[i, i
′, j, j′].

Proof. Recall that PC1[i, i
′, j, j′] is the size of the minimum set C of disks of radius

δ2 that covers B[j, j′], and there exists a disk c of radius δ1 that covers A[i, i′], s.t.

for any c′ ∈ C, the distance between the center of c and c′ is at most δ3. Notice that

c is located in Xi,i′ , and thus all the points of C are located in Xi,i′ ⊕ δ3. It follows

that APC1[i, i
′, j, j′] ≤ |C| = PC1[i, i

′, j, j′].

Computing the approximated components

We present a greedy algorithm that given 1 ≤ i ≤ i′ ≤ n, 1 ≤ j ≤ j′ ≤ m, computes

APC1[i, i
′, j, k] for all j ≤ k ≤ j′ (resp. APC2[i, k, j, j

′] for all i ≤ k ≤ i′). The

algorithm runs in O((j′ − j)(j′ − j + i′ − i)) time (See Algorithm 8.6).

Algorithm 8.6

Find Xi,i′ =
⋂

i≤k≤i′
D(ak, δ1).

Set R← R.

Set counter ← 1.

Set k ← j.

While k ≤ j′ and counter ̸=∞:

1. Set R← R ∩D(bk, δ2).

2. If (Xi,i′ ⊕ δ3) ∩R ̸= ∅, set APC1[i, i
′, j, k]← counter.

3. Else,

Set R← D(bk, δ2).

If (Xi,i′ ⊕ δ3) ∩R ̸= ∅, set counter ← counter + 1.

Else, set counter ←∞.

Set APC1[i, i
′, j, k]← counter.

4. Set k ← k + 1.
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Running time. Finding Xi,i′ takes O(i′ − i) time, and step 1 takes O(j′ − j) time.

Step 2 takes O(j′ − j + i′ − i) time, since the complexity of Xi,i′ ⊕ δ3 is O(i′ − i),

the complexity of R is O(j′ − j), and both regions are convex. The while loop runs

O(j′ − j) times, so the total running time is O((j′ − j)(j′ − j + i′ − i)).

Computing all the approximated pair components using Algorithm 8.6 takes

O(n2m2(m+ n)) time. The idea of our algorithm is to compute only a small part of

the components, and then approximate the others using the ones that were computed.

Lemma 8.19. Fix 1 ≤ i ≤ i′ ≤ n, 1 ≤ j ≤ j′ ≤ m, then for any i ≤ x ≤ i′ and

j ≤ y ≤ j′:

1. APC1[i, x, j, j
′] ≤ APC1[i, i

′, j, j′] and APC1[x, i
′, j, j′] ≤ APC1[i, i

′, j, j′].

2. APC1[i, i
′, j, y] + APC1[i, i

′, y, j′] ≤ APC1[i, i
′, j, j′] + 1.

3. APC1[i, x, j, y] + APC1[x, i
′, y, j′] ≤ APC1[i, i

′, j, j′] + 1.

Proof. Let i ≤ x ≤ i′ and j ≤ y ≤ j′. (1) is clear because the region Xi,i′ ⊕ δ3 is

contained in the regions Xi,x⊕δ3 and Xx,i′⊕δ3, and thus a solution to APC1[i, i
′, j, j′]

is also a solution to APC1[i, x, j, j
′] and APC1[x, i

′, j, j′].

Let C = c1, . . . , ct be the set of size t = APC1[i, i
′, j, j′] of disks that covers

B[j, j′] and whose centers are located in Xi,i′ ⊕ δ3. Let ck be the disk that covers

by. Then the set c1, . . . , ck covers B[j, y] and the set ck, . . . , ct covers B[y, j′]. We

have APC1[i, i
′, j, y] ≤ k and APC1[i, i

′, y, j′] ≤ t− (k−1) = APC1[i, i
′, j, j′]−k+1,

which proves (2).

From (1) we haveAPC1[i, x, j, y]+APC1[x, i
′, y, j′] ≤ APC1[i, i

′, j, y]+APC1[i, i
′, y, j′].

From (2), APC1[i, i
′, j, y] + APC1[i, i

′, y, j′] ≤ APC1[i, i
′, j, j′] + 1, which proves

(3).

We only compute APC1[i, i, j, j
′],APC2[i, i, j, j

′] for all 1 ≤ i ≤ n and 1 ≤ j ≤
j′ ≤ m, and APC1[i, i

′, j, j],APC2[i, i
′, j, j] for all 1 ≤ i ≤ i′ ≤ n and 1 ≤ j ≤ m.

This takes O(nm3 + n2m2) time using Algorithm 8.6.

Composing the approximated solution

Let AAPC1[i, i
′, j, j′] = APC1[i, i, j, j

′]+APC1[i, i
′, j′, j′]. By Lemma 8.19(3), choos-

ing x = i and y = j′, we have APC1[i, i, j, j
′]+APC1[i, i

′, j′, j′] ≤ APC1[i, i
′, j, j′]+1,

and by Lemma 8.18 we have AAPC1[i, i
′, j, j′] ≤ PC1[i, i

′, j, j′] + 1.

Now let APX[i, j] be the approximate solution for A[1, i] and B[1, j]. We set

APX[i, j] = min
p<i,q<j

APX[p, q]+min{AAPC1[p+1, i, q+1, j], AAPC2[p+1, i, q+1, j]}

Obviously, given the values of AAPC1 and AAPC2, APX[n,m] can be computed

in O(m2n2) time.
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Lemma 8.20. Let OPT be the size of an optimal solution, i.e. OPT is the smallest

number such that there exists a pair of chains A′,B′ each of at most OPT (arbitrary)

vertices, such that d1(A,A
′) ≤ δ1, d2(B,B′) ≤ δ2, and ddF (A

′, B′) ≤ δ3. Then

APX[n,m] ≤ 2 ·OPT .

Proof. Let A′ and B′ be a pair of chains, each of at most OPT (arbitrary) vertices,

such that d1(A,A
′) ≤ δ1, d2(B,B′) ≤ δ2, and ddF (A

′, B′) ≤ δ3.

Let WA′B′ = {(A′
i, B

′
i)}ti=1 be a Fréchet walk along A′ and B′. The pairs (A′

i, B
′
i)

represents the pair components that are composing an optimal solution. Let Ai and

Bi be the pair of subchains of A and B, respectively, that we associated with the

pair (A′
i, B

′
i) in the beginning of Section 8.5.

With each pair (A′
i, B

′
i), we associate a value Ci as follows: Let Ai = A[p, p′] and

Bi = B[q, q′], then Ci = min{AAPC1[p, p
′, q, q′], AAPC2[p, p

′, q, q′]}. Notice that Ci

is the number of points in one side of the approximated component. From Lemma 8.19,

we have Ci ≤ min{PC1[p, p
′, q, q′] + 1, PC2[p, p

′, q, q′] + 1} = max{|A′
i|, |B′

i|}+ 1.

Thus, there exists a solution that uses the approximated components, of size:

t∑
i=1

Ci ≤
t∑

i=1

(max{|A′
i|, |B′

i|}+ 1) = |A′|+ |B′| ≤ 2 ·max{|A′|, |B′|} = 2 ·OPT.

Thus we have the following theorem:

Theorem 8.21. A 2-approximation for GCPS can be computed in O(nm3 + n2m2 +

n3m) time.

Remark 8.22. Notice that we do not have to actually compute a solution to GCPS,

just to return the minimum k. A solution of size 2 ·OPT can be computed as follows:

for each approximated component APC1[i, i
′, j, j′] (or APC2[i, i

′, j, j′]) keep the set

C1 of centers of disks that are located in Xi,i′ ⊕ δ3. For each such center c1 ∈ C1,

find a point c2 in Xi,i′ s.t. d(c1, c2) ≤ δ3, and put c2 in a new set C2. If our solution

APX[n,m] uses the approximated component APC1[i, i
′, j, j′], then the points of C1

will be used to cover B[j, j′] and the points of C2 will be used to cover A[i, i′].

8.5.3 1-sided GCPS

In this variant of the problem, we can imagine there are two dogs, one is walking

on a path A and the other on a path B, and a man has to walk both of them, one

with a leash of length δ1 and the other with a leash of length δ2. We have to find a

minimum-size polygonal path for the man, such that he can walk both dogs together.

Problem 8.23 (1-Sided General Chain Pair Simplification).

Instance: Given a pair of polygonal chains A and B of lengths n and m, respectively,
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an integer k, and two real numbers δ1, δ2 > 0.

Problem: Does there exist a chain C of at most k (arbitrary) vertices, such that

ddF (A,C) ≤ δ1 and ddF (B,C) ≤ δ2?

Denote Xi,i′ =
⋂

i≤k≤i′
D(ak, δ1) and Zj,j′ =

⋂
j≤k≤j′

D(bk, δ2) as before.

For any 1 ≤ i ≤ i′ ≤ n and 1 ≤ j ≤ j′ ≤ m, let I[i, i′, j, j′] =

1, Xi,i′ ∩ Zj,j′ ̸= ∅

0, otherwise
.

Notice that I[i, i′, j, j′] = 1 if and only if there exists one point that covers both

A[i, i′] and B[j, j′]. The values of I[i, i′, j, j′] can be computed in O((n+m)4) time,

using Algorithm 8.7.

Algorithm 8.7 Given i, j, compute I[i, p, j, q] for all i ≤ p ≤ n, j ≤ q ≤ m.

Set q ← m

For p = i to n:

Set I[i, p, j, s]← 0 for all q < s ≤ m.

While q ≥ j:

If Xi,p ∩ Zj,q ̸= ∅,
Set I[i, p, j, s]← 1 for all j ≤ s ≤ q.

Else,

Set I[i, p, j, q]← 0.

Set q ← q − 1.

Notice that if I[i, p, j, q] = 0, than I[i, p′, j, q] = 0 for any p′ > p. The running

time of Algorithm 8.7 is O((m+n)2): testing whether Xi,p ∩Zj,q ̸= ∅ takes O(m+n)

time. The number of such tests is O(m+n), because p, q are monotonically increasing.

Thus we can compute I[i, i′, j, j′] for any 1 ≤ i ≤ i′ ≤ n, 1 ≤ j ≤ j′ ≤ m in

O(mn(m+ n)2) time by running Algorithm 8.7 for all i, j.

Now we use a dynamic programming algorithm as follows: Let OPT [i, j] be

the length of the minimum-length sequence C such that ddF (A[1, i], C) ≤ δ1 and

ddF (B[1, j], C) ≤ δ2. Fix i, j > 1, we have OPT [i, j] = min
p,q:I[p,i,q,j]=1

{OPT [p− 1, q −

1] + 1}.

Running time The values of I[i, i′, j, j′] can be computed in O((n+m)4) time. For

each i, j > 1, we have O(mn) values to check. Thus, the running time is O((m+n)4).

8.6 GCPS under the Hausdorff distance

The Hausdorff distance between two sets of points A and B is defined as follows:

dH(A,B) = max{max
a∈A

min
b∈B

d(a, b), max
b∈B

min
a∈A

d(a, b)}.
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As mentioned above, the chain pair simplification under the Hausdorff distance

(CPS-2H) is NP-complete. In this section we investigate the general version of this

problem. We prove that it is also NP-complete, and give an approximation algorithm

for the problem.

8.6.1 GCPS-2H is NP-complete

We show that GCPS under Hausdorff distance (GCPS-2H) is NP-complete, we use

a simple reduction from geometric set cover: Given a set P of n points, and a radius

δ, find the minimum number of disks with radius δ that cover P .

Let the sequence A be the points of P in some order (the order does not matter),

and the sequence B be one point b with distance 2δ from P . Let δ1 = δ2 = δ and

δ3 = 4δ + diam(P ). Now a simplification for B is just one point anywhere in D(b, δ),

and finding a simplification for A is equivalent to finding the minimum-cardinality

set of disks that covers P .

Theorem 8.24. GCPS-2H is NP-complete.

8.6.2 An approximation algorithm for GCPS-2H

Consider the variant of GCPS-2H where d1 = d2 = dH and the distance between

the simplifications A′ and B′ is measured with Hausdorff distance and not Fréchet

distance (i.e. dH(A
′, B′) ≤ δ3 instead of ddF (A

′, B′) ≤ δ3). We call this variant

GCPS-3H. Next, we show that GCPS-3H=GCPS-2H.

Lemma 8.25. Given two sets of points A and B, if dH(A,B) ≤ δ, then there exist

an ordering A′ of the points in A and an ordering B′ of the points in B, such that

ddF (A
′, B′) ≤ δ.

Proof. We construct a bipartite graph G(V = A ∪ B,E), where E = {(a, b) | a ∈
A, b ∈ B, d(a, b) ≤ δ}. Notice that since dH(A,B) ≤ δ, there are no isolated vertices.

Now, while there exists a path with three edges in the graph, delete the middle edge.

The maximal path in the resulting graph G′ has at most two edges, and there are

still no isolated vertices (because we only delete the middle edge). Let C1, . . . , Ct be

the connected components of G′. Notice that each Ci has exactly one point from A

or exactly one point from B. Let A′ be the sequence of points C1 ∩ A, . . . , Ct ∩ A,

and B′ be the sequence C1 ∩B, . . . , Ct ∩B. We get that C1, . . . , Ct are a paired walk

along A′ and B′ with cost at most δ.

Since we can choose the order of points in the simplifications A′ and B′ in the

GCPS-2H problem, we get by the above lemma that any solution for GCPS-3H

is also a solution for GCPS-2H. Also, since for any two sequence P,Q we have

dH(P,Q) ≤ ddF (P,Q), we get that any solution for GCPS-2H is also a solution for

GCPS-3H.
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Lemma 8.26. Given two sets of points A and B, if dH(A,B) ≤ δ, then there exist

an ordering A′ of the points in A and an ordering B′ of the points in B, such that

ddF (A
′, B′) ≤ δ.

Proof. We construct a bipartite graph G(V = A ∪ B,E), where E = {(a, b) | a ∈
A, b ∈ B, d(a, b) ≤ δ}. Notice that since dH(A,B) ≤ δ, there are no isolated vertices.

Now, while there exists a path with three edges in the graph, delete the middle edge.

The maximal path in the resulting graph G′ has at most two edges, and there are

still no isolated vertices (because we only delete the middle edge). Let C1, . . . , Ct be

the connected components of G′. Notice that each Ci has exactly one point from A

or exactly one point from B. Let A′ be the sequence of points C1 ∩ A, . . . , Ct ∩ A,

and B′ be the sequence C1 ∩B, . . . , Ct ∩B. We get that C1, . . . , Ct are a paired walk

along A′ and B′ with cost at most δ.

Since we can choose the order of points in the simplifications A′ and B′ in the

GCPS-2H problem, we get by the above lemma that any solution for GCPS-3H

is also a solution for GCPS-2H. Now, since for any two sequence P,Q we have

dH(P,Q) ≤ ddF (P,Q), we get that any solution for GCPS-2H is also a solution for

GCPS-3H.

Let S1 = {p1, . . . , pk} be the smallest set of points such that for each ai ∈ A there

exists some pj ∈ S1 s.t. d(ai, pj) ≤ δ1 and for each pj ∈ S1 there exists some bi ∈ B

s.t. d(pj, bi) ≤ δ2 + δ3. Notice that since S1 is minimum, we also know that for each

pj ∈ S1 there exists some ai ∈ A s.t. d(ai, pj) ≤ δ1 (or, we can just delete the points

of S1 that do not cover any points from A).

We can find a c-approximation for S1, using a c-approximation algorithm for

discrete unit disk cover (DUDC). The DUDC problem is defined as follows: Given

a set P of t points and a set D of k unit disks on a 2-dimensional plane, find a

minimum-cardinality subset D′ ⊆ D such that the unit disks in D′ cover all the

points in P . We denote by Tc(k, t) the running time for a c-approximation algorithm

for the DUDC problem with k unit disks and t points.

Lemma 8.27. Given a c-approximation algorithm for the DUDC problem that runs

in Tc(k, t) time, we can find a c-approximation for S1 in Tc(n, (m+n)2)+O((m+n)2)

time.

Proof. Compute the arrangement of {D(ai, δ1)}1≤i≤m ∪ {D(bj, δ2 + δ3)}1≤j≤n (there

are (m+ n)2 disjoint cells in the arrangement). Clearly, it is enough to choose one

candidate from each cell. Now we can use the c-approximation algorithm for the

DUDC problem.

Symmetrically, let S2 = {q1, . . . , ql} be the smallest set of points such that for

each bi ∈ B there exists some qj ∈ S2 s.t. d(bi, qj) ≤ δ2 and for each qj ∈ S2 there

exists some ai ∈ A s.t. d(qj, ai) ≤ δ1 + δ3.
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For each point pj ∈ S1 there exists some bi ∈ B s.t. d(pj, bi) ≤ δ2 + δ3, so we can

find a point p′j such that d(p′j, bi) ≤ δ2 and d(p′j, pj) ≤ δ3. Denote S ′
1 = {p′1, . . . , p′k}.

We do the same for the points of S2, and find a set S ′
2 = {q′1, . . . , q′k} such that for

any q′j ∈ S ′
2,d(q

′
j, qj) ≤ δ3 and there exists some ai ∈ A s.t. d(q′j, ai) ≤ δ1.

Now, we know that for each ai ∈ A there exists some p ∈ S1∪S ′
2 s.t. d(ai, p) ≤ δ1,

and, on the other hand, for each p ∈ S1∪S ′
2 there exists some ai ∈ A s.t. d(ai, p) ≤ δ1.

So we have dH(A, S1∪S ′
2) ≤ δ1. Similarly, we have dH(B, S2∪S ′

1) ≤ δ2. We also know

that for each pj ∈ S1 we have a point p′j ∈ S ′
1 s.t. d(p′j, pj) ≤ δ3, and for each q′j ∈ S ′

2

we have a point qj ∈ S2 s.t. d(q′j, qj) ≤ δ3. So we also have dH(S1 ∪S ′
2, S2 ∪S ′

1) ≤ δ3,

and since CPS-2H=CPS-3H, we get that S1 ∪ S ′
2 and S2 ∪ S ′

1 is a possible solution

for CPS-2H.

The size of the optimal solution OPT is at least max{|S1|, |S2|}. Using a c-

approximation algorithm for finding S1 and S2, the size of the approximate solution

will be c(|S1|+ |S2|) ≤ 2cmax{|S1|+ |S2|} = 2c ·OPT .

Theorem 8.28. Given a c-approximation algorithm for the DUDC problem that runs

in Tc(k, t) time, our algorithm gives a 2c-approximation for the GCPS-2H problem,

and runs in Tc(n, (m+ n)2) + Tc(m, (m+ n)2) +O((m+ n)2) time.



Conclusion and Open Problems

In the first part of this thesis, we investigated several variants of the discrete Fréchet

distance that make more sense in some realistic scenarios. Specifically, we considered

situations were the input curves contain noise, or when they are not aligned with

respect to each other.

First, we described efficient algorithms for three variants of the discrete Fréchet

distance with shortcuts (DFDS). Previously, only continuous variants of Fréchet

distance with shortcuts were considered in the literature, some of which were proven

to be NP-hard. We showed that the discrete variants are much easier to compute,

even in the semi-continuous case. Moreover, given two curves of lengths m ≤ n,

respectively, we presented a linear time algorithm for the decision version of 1-sided

DFDS, and an O((m+n)6/5+ε) expected time algorithm for the optimization version.

This gap between the decision and the optimization versions is due to the number

of possible values that can determine the distance between the curves. It is an

interesting open problem to either close this gap by presenting a near linear time

algorithm, or to prove a lower bound stating that no algorithm exists for 1-sided

DFDS whose running time is O(n1+δ) for some δ < 1/5. Surprisingly, 1-sided DFDS

is even easier to compute than the classic DFD: It was shown that under some

computational assumption, there is no algorithm with running time in O(n2−ε) for

DFD. It would be interesting to find other variants of Fréchet distance that are

meaningful but also easier to compute.

Next, we study another important variant of DFD — the discrete Fréchet distance

under translation. We consider several variants of the translation problem. For DFD

with shortcuts in the plane, we present an O(m2n2 log2(m+n))-time algorithm. The

running time of our algorithm is very close to the lower bound of n4−o(1) recently

presented in [BKN19], for DFD under translation. It would be interesting to see if a

similar bound applies for the shortcuts variant. When the points of the curves are in

1D, we present an O(m2n(1+ log(n/m))) time algorithm for DFD, O(mn log(m+n))

time algorithm for the shortcuts variant, and O(mn log(m + n)(log log(m + n))3)

time algorithm for the weak variant, all under translation. In contrast to the lower

bound of O(n2−ε) for computing DFD (with no translation), which also applies when

the points are in 1D, our results show that the translation problem becomes easier

in 1D. Another interesting open question is whether lower bounds can be proven for
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the problem in 1D. Furthermore, in Chapter 3 we presented an alternative scheme

for BOP, and demonstrated its advantage when applied to the most uniform path

problem, the most uniform spanning tree, and the weak DFD under translation in

1D. It would be interesting to see if there are other problems that could benefit from

using our scheme.

Finally, in the last chapter of this part, we presented the discrete Fréchet gap

(DFG) as an alternative distance measure for curves. We showed that there is an

interesting connection between DFG and DFD under translation in 1D: We can use

(almost) similar algorithms to compute them. An open question is are there other

connections between these variants, and in which situations one can establish that

the gap version and its variants are preferable over the classic DFD.

In the second part of the thesis, we dealt with problems that arise in the context

of big data, i.e., when our input is huge and thus its processing must be super

efficient. In some of these problems, the input is a large set of polygonal curves or

trajectories, and we need to preprocess or compress it such that certain information

can be retrieved efficiently. In other problems, we are given one or two protein chains

that we need to visualize or manipulate without losing some valuable features.

We first considered the nearest neighbor problem for curves (NNC), which is a

fundamental problem in machine learning. We presented a simple and deterministic

algorithm for the approximation version of the problem (ANNC), which is more

efficient than all previous ones. However, our approximation data structure still uses

space and query time exponential in m, which makes it impractical for large curves.

Thus, we also identified several important cases in which it is possible to obtain near

linear bounds for the problem. In these cases, either the query is a line segment

or the set of input curves consists of line segments. There are many questions that

remain open regarding the nearest neighbor problem. First, it would be interesting to

see how our algorithms generalize to the case of 3-vertex curves, and whether we can

achieve near linear bounds for this case as well. Secondly, can we improve the query

time of our ANNC data structure? can we find a trade-off between the query time

and space complexity? Furthermore, is it possible to use our data structures in order

to solve the range searching problem, without increasing the space consumption?

Next, we studied several cases of the (k, ℓ)-center problem for curves. Since this

problem is NP-hard when k or ℓ are part of the input, we studied the case where

k = 1 and ℓ = 2, i.e., the center curve is a segment. We presented near-linear time

exact algorithms under L∞, even when the location of the input curves is only fixed

up to translation. Under L2, we presented a roughly O(n2m3)-time exact algorithm.

In a very recent result, Buchin et. al. [BDS19] give a polynomial time exact algorithm

for (k, ℓ)-center under DFD (with L2), when k and ℓ are constants. Plugging k = 1

and ℓ = 2 in their bound, one gets a running time of O(m5n4). Therefore, an obvious

open question is can we generalize our algorithm to the case where k and ℓ are some
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constants? Another question is what other cases of the center problem can be solved

in polynomial time? And also, is there a different definition of the center problem

for curves, which is meaningful and also easier to compute? For example, instead of

minimizing the distance to the centers, we can minimize their length ℓ or number k,

for a given radius r. The problem with this variant is that a solution may not exist

if r is too small.

Finally, in the last two chapters of this part, we discussed the simplification

problem for polygonal curves or chains. We presented a collection of data structures

for DFD queries, and then showed how to use them to preprocess a chain for k-

simplification queries. Then we considered the chain pair simplification problem

(CPS), which aims at simplifying two chains simultaneously, so that the distance

between the resulting simplifications is bounded. When the chains are simplified using

the Hausdorff distance (CPS-2H), the problem becomes NP-complete. However, the

complexity of the version that uses DFD (CPS-3F) has been open since 2008. We

introduced the weighted version of the problem (WCPS) and proved that WCPS-3F

is weakly NP-complete. Then, we resolved the question concerning the complexity

of CPS-3F by proving that it is polynomially solvable, contrary to what was believed.

Moreover, we devised a sophisticatedO(m2n2min{m,n})-time dynamic programming

algorithm for the minimization version of the problem. We also considered a more

general version of the problem (GCPS) where the vertices of the simplifications may

be arbitrary points, and presented a (relatively) efficient polynomial-time algorithm

for the problem, and a more efficient 2-approximation algorithm. We also investigated

GCPS under the Hausdorff distance, showing that it is NP-complete and presented

an approximation algorithm for the problem. The running times of our algorithms

is rather high, and since CPS-3F has several applications that require an efficient

running time, an obvious question is whether it is possible to reduce the running

time of the algorithm for CPS-3F? Also, this problem was considered only for general

curves, is it possible to improve the running time for more “realistic” curves, for

example, c-packed or backbone curves? In addition, it would be interesting to

consider the case where we want to simplify more than two curves simultaneously.

To wrap up, the Fréchet distance and its variants have been widely studied in

many different settings during the last few decades. Nevertheless, many problems

are still open, and many new intriguing questions are born with each problem that

is settled. In this thesis, we have tried to contribute to the developing theory dealing

with the Fréchet distance, by addressing a collection of fundamental problems. We

hope that our work will turn out to be useful and that it will stimulate further work

in this fascinating domain.
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[Fré06] M. Maurice Fréchet. Sur quelques points du calcul fonctionnel. Rendi-

conti del Circolo Matematico di Palermo, 22(1):1–72, 1906.

[GH17] Joachim Gudmundsson and Michael Horton. Spatio-temporal analysis

of team sports. ACM Computing Surveys, 50(2):1–34, April 2017.

[GO95] Anka Gajentaan and Mark H. Overmars. On a class of o(n2) problems

in computational geometry. Comput. Geom., 5:165–185, 1995.

[God91] Michael Godau. A natural metric for curves – computing the distance

for polygonal chains and approximation algorithms. In Proceedings of

the 8th Annual Sympos. on Theoretical Aspects of Computer Science

STACS, pages 127–136, 1991.

[Gon85] Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster

distance. Theoretical Computer Science, 38:293–306, 1985.

142



[GS88] Zvi Galil and Baruch Schieber. On finding most uniform spanning

trees. Discrete Applied Mathematics, 20(2):173–175, 1988.

[HN79] Wen-Lian Hsu and George L. Nemhauser. Easy and hard bottle-

neck location problems. Discrete Applied Mathematics, 1(3):209–215,

November 1979.

[HPIM12] Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. Approximate near-

est neighbor: Towards removing the curse of dimensionality. Theory

of computing, 8(1):321–350, 2012.

[HSV97] Pierre Hansen, Giovanni Storchi, and Tsevi Vovor. Paths with mini-

mum range and ratio of arc lengths. Discrete Applied Mathematics,

78(1-3):89–102, 1997.
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a simple polygon. In Proceedings of the 25th Annual Sympos. on

Theoretical Aspects of Computer Science, STACS, pages 193–204, 2008.

[JK94] Jerzy W. Jaromczyk and Miroslaw Kowaluk. An efficient algorithm

for the Euclidean two-center problem. In Proceedings of the 10th

Symposium on Computational Geometry, pages 303–311, Stony Brook,

NY, USA, June 1994. ACM Press.

[JL84] William Johnson and Joram Lindenstrauss. Extensions of Lipschitz

mappings into a Hilbert space. Contemporary Mathematics, 26:189–206,

1984.

[JXZ08] Minghui Jiang, Ying Xu, and Binhai Zhu. Protein structure-structure
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